Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt đường chéo BD ở E và cắt BC,DC theo thứ tự ở K,G.CMR:
a)AE2=EK.EG;
b)1/AE=1/AK+1/AG.
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình thoi ABCD có cạnh là a. Qua C vẽ đường thẳng m cắt tia BA và DA theo thứ tự ở E, F. CMR: \(\dfrac{1}{AE}+\dfrac{1}{AF}\) không đổi với mọi vị trí của đường thẳng m.
Cho hình vuông ABCD có cạnh bằng a và E là 1 điểm bất kì nằm trên BBC. 2 đường thẳng AE và CD cắt nhau tại F. Tia Ax vuông góc vs AE tại A cắt đường thẳng CD tại I.
CMR: \(S_{AEI}ko< =\dfrac{1}{2}a^2\)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là điểm bất kì trên cạnh BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G. Chứng minh rằng:
a, Tứ giác EGFK là hình thoi
b, \(AE^2=FK.FC\)
c, Tính tỉ số \(\dfrac{CE}{CB}\) khi tam giác CEK có diện tích lớn nhất
Cho hình bình hành abcd. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E,K,G.
a) CMR: \(\frac{1}{AE}=\frac{1}{AG}+\frac{1}{AK}\)
b) Khi GC: GD=1:2 hãy tính tỉ số điện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho hình thang ABCD ( AB // CD ) . Các đường chéo cắt nhau ở O . Đường thẳng a qua O // với đáy của hình thang và cắt các cạnh bên AD , BC theo thứ tự E và F . Chứng minh rằng :
a) \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{EF}\)
b) Đường thẳng b // với đây cắt 2 cạnh bên và cắt 2 đường chéo của hình thang lần lượt là M ; N ; H ; K . Chứng minh : MH = MK
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO