a/AB//DG nên \(\frac{AE}{AG}=\frac{BE}{BD}\left(1\right)\)
AD//BK nên \(\frac{AE}{AK}=\frac{DE}{DB}\left(2\right)\)
Cộng (1) và (2) vế theo vế có: \(AE\left(\frac{1}{AG}+\frac{1}{AK}\right)=\frac{BE}{DB}+\frac{DE}{DB}\)
\(\Leftrightarrow\frac{1}{AG}+\frac{1}{AK}=\frac{1}{AE}\)
b/AD//CK nên \(\Delta ADG\sim\Delta KCG\left(g-g\right)\Rightarrow\frac{S_{KCG}}{S_{ADG}}=\left(\frac{GC}{GD}\right)^2=\frac{1}{4}\)
Vậy \(S_{ABCD}=S_{ADG}+S_{ABCG}=4S_{KCG}+S_{ABCG}=3S_{KCG}+S_{ABK}\left(1\right)\)
Có \(\frac{GC}{CD}=\frac{1}{3}=\frac{GC}{AB}\)
GC//AB nên \(\Delta KCG\sim\Delta KBA\Rightarrow\frac{S_{KCG}}{S_{KBA}}=\left(\frac{GC}{AB}\right)^2=\frac{1}{9}\Rightarrow S_{KBA}=9S_{KCG}\)
Thay vào (1) đc \(S_{ABCD}=3S_{KCG}+9S_{KCG}=12S_{KCG}\)