Lời giải:
Ta chứng minh bổ đề sau: với tam giác $ABC$ có $G$ là trọng tâm tam giác thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Thật vậy:
Kéo dài $AG$ cắt $BC$ tại $G'$. Theo tính chất trọng tâm suy ra \(\overrightarrow{GA}+2\overrightarrow{GA'}=0\)
Mà \(\left\{\begin{matrix} \overrightarrow{GA'}=\overrightarrow{GB}+\overrightarrow{BA'}\\ \overrightarrow{GA'}=\overrightarrow{GC}+\overrightarrow{CA'}\end{matrix}\right.\Rightarrow 2\overrightarrow{GA'}=\overrightarrow{GB}+\overrightarrow{GC}+(\overrightarrow{BA'}+\overrightarrow{CA'})=\overrightarrow{GB}+\overrightarrow{GC}\)
Do đó, \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)
Áp dụng vào bài toán, ta có:
\(\left\{\begin{matrix}
\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\\
\overrightarrow{HA}+\overrightarrow{HD}+\overrightarrow{HC}=\overrightarrow{0}\end{matrix}\right.\)
\(\Rightarrow X=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}+\overrightarrow{HA}+\overrightarrow{HC}+\overrightarrow{HD}+\overrightarrow{HB}=\overrightarrow{GD}+\overrightarrow{HB}\)
\(\Leftrightarrow X=\overrightarrow{GB}+\overrightarrow{BD}+\overrightarrow{HD}+\overrightarrow{DB}=\overrightarrow{HD}+\overrightarrow{GB}\)
Gọi \(T'\) là trung điểm của $AC$ thì $D,H,T'$ thẳng hàng và $B,G,T'$ thẳng hàng hay cả $6$ điểm thẳng hàng
Do đó \(\overrightarrow{HD},\overrightarrow{GB}\) là hai vector cùng phương, ngược hướng (theo chiều vẽ)
Mặt khác dễ thấy tam giác $ADC$ và $CBA$ là hai tam giác bằng nhau, lại có hai trọng tâm lần lượt là \(H,G\) nên \(DH=BG\)
Như vậy. \(\overrightarrow{HD}=-\overrightarrow{GB}\Leftrightarrow \overrightarrow{HD}+\overrightarrow{GB}=\overrightarrow{0}\Leftrightarrow X=\overrightarrow{0}\)
Ta có đpcm.