Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3
a) Cho pt x2-2mx+x2-2m+4=0 (1). Tìm điều kiện của m để pt (1) có 2 nghiệm không âm X1,X2 sao cho biểu thức P=\(\sqrt{X1}+\sqrt{X2}\) đạt giá trị nhỏ nhất
b) cho parabol (P):y=x2 và đường thẳng (d):y=2(m+1)x-m2. tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A=(x1+y1) và B(x2,y2) thỏa mãn (x1-m)2+x2=3m
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
Cho hàm số: y=(m-2)x+m+1. Tìm m để đồ thị cắt trục hoành tại điểm có hoành độ nhỏ hơn -1
cho hàm số : y=(m-4)x+m+4
a) CMR với mọi giá trị của m thì hàm số và parabol (P) :y=x2 cắt nhau tại 2 điểm phân biệt . Gọi x1, x2 là hoành độ các giao điểm , tìm m sao cho x1(x1-1)+x1(x2-1)=18
b) gọi đồ thị hàm số đã cho là đường thẳng (d) . CMR khoảng cách từ điểm O đến (d) không lớn hơn \(\sqrt{65}\)
Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
cho hàm số: y = (m - 1) x + 2m - 5 : (m \(\ne\) 1) (1)
a, Timd giá trị của m để đường thẳng có phương trình 1 song song với đường thẳng y = 3x + 1
b, Vẽ đồ thị của hàm số (1) khi m = 1,5 . Tính góc tạo bởi đường thẳng vẽ được và trục hoành (kết quả làm tròn đến phút)