Đồ thị hàm số \(y=a^x\) và \(y=log_ax\) đối xứng nhau qua \(y=x\)
\(\Rightarrow y=log_7\frac{x}{2}\) đối xứng với \(y=7^{\frac{x}{2}}\) qua \(y=x\)
Đồ thị hàm số \(y=a^x\) và \(y=log_ax\) đối xứng nhau qua \(y=x\)
\(\Rightarrow y=log_7\frac{x}{2}\) đối xứng với \(y=7^{\frac{x}{2}}\) qua \(y=x\)
phương trình đường tiệm cận ngang của đồ thị hàm số y=x-1/2x+1 là
a.x=1/2 b.y=-1/2 c.y=1/2 d.x=-1/2
Bài tập 1: Cho hàm số y = \(-x^3+3x-2\left(C\right)\)
a, Khảo sát.
b, Viết phương trình tiếp tuyến của (C) tại M (2;0)
Cho hàm số y = \(\frac{2x+1}{x-1}\)có đò thị (C). Có bao nhiêu điểm m thuộc (C) có tung độ nguyên dương sao cho khoảng cách từ M đến tiệm cận đứng =3 lần khoảng cách từ M đến tiệm cận ngang của đồ thị (C)
Bài 1: Tìm điều kiện của x để có biểu thức sau có ý nghĩa:
a) \(\sqrt{2x}\) b) \(\sqrt{x-1}\) c) \(\sqrt{\frac{1}{x+1}}\) d) \(\sqrt{\left(x+1\right)\left(x-1\right)}\)
Bài 2: rút gọn các biểu thức:
a) \(2\sqrt{2}+\sqrt{18}-\sqrt{32}\)
b) \(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
c) \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\)
Bài 3: xác định hàm số bậc nhất y=ax+b
a) Biết đồ thị của hàm số song song với đường tahwngr y=2x và đi qua điểm A(1;4)
b) Vẽ đồ thị hàm số ứng với a, b vừa tìm được
Bài 4: Cho tam giác ABC vuông tại A. Biết BC=10cm, góc C=30độ. Gải tam giác vuông ABC
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. biết AB=3, AC=4. (phải vẽ hình)
a) Tính AH, BH?
b) chứng minh CB là tiếp tuyến của đường tròn (A, AH)
c) kẻ tiếp tuyến BI và CK với đường tròn (A,AH) (I,K là điểm). Chứng minh: BC=BI+CK và ba điểm I, A, K thẳng hàng
Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:
a) \(I=2ln\left(x\right)\)
b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)
c) \(I=ln\left(x^{lnx}e\right)\)
d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)
Câu 2: Hàm số nào sau đây không có cự trị:
a) \(y=\frac{2+x^2}{x^2-4}\)
b) \(y=x^8+x^6+2x^4-4x^2-x+1\)
c) \(y=sin\left(cos\left(x\right)\right)\)
d) \(y=x^3+2x^2+\sqrt{x}\)
Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)
b)\(\left[-2;4\right]\)
c) \(\left(4;+\infty\right)\)
d) Không tồn tại giá trị m
Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\) và \(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:
a) \(a-b+c+d=0\)
b) \(c=\frac{1}{d}\)
c) \(\left(a-b\right)\left(c+d\right)=0\)
d) \(a+b=35c^2+35d\)
Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0
b) 1
c) 2
d) Đáp án khác
Cho hàm số y=\(x^3-3mx^2+6mx-8\) có đồ thị (C). Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5;5] để cắt trục hoàng tại 3 điểm phân biệt có trục hoành lập thành cấp số nhân?
Câu 28: Tính đạo hàm của hàm số y = 3x+1
A. y' = 3x+1ln3 B. y' = (1 + x) . 3x
C. y' = \(\dfrac{3^{x+1}}{ln3}\) D. Y' = \(\dfrac{3^{X+1}.ln3}{1+x}\)
Cho hàm số y=f(x) có đạo hàm f’(x)=x2(x-1)(13x-15)3. Khi đó số điểm cực trị hàm số y= f(\(\frac{5x}{x^2+4}\)) là
A.5 B.2 C.3 D.6
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:
a) 0
b) 1
c) 2
d) -1
Câu 2: Cho cấp số cộng có \(u_1=2\) và \(u_7=23\) .
a) Xác định công thức tổng quát của cấp số cộng trên
b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)
c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:
TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.
TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau
TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau