lập bảng biến thiên và vẽ đồ thị hàm số
a) y=\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+3\right)^2\left(x\le1\right)\\2\left(x>1\right)\end{matrix}\right.\)
Tìm tập hợp các gtri của m để đt y=-1 cắt đồ thị hàm số : \(y=x^4-\left(3m+2\right)x^2+3m\) tại 4 điểm pb có hoành độ nhỏ hơn 2
a, xác định parabol y = ax^2 + bx + c đạt cực tiểu bằng 4 tại x = -2 và đồ thị đi qua A ( 0 ; 6)
b, xác định GTNN của hàm số y = x^2 - 4x + 1
cho hàm số \(y=f\left(x\right)=x^2-4x+3\). tìm m để phương trình \(f\left(f\left(\left|x\right|+1\right)\right)=m\) có 4 nghiệm phân biệt thuộc đoạn [-2;2]
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
1. Lập bảng biến thiên và vẽ đths : a, y=-x2 +4x - 3 b, y= x2 -2x -4
2. Tìm m để các pt sau có 2 nghiệm phân biệt: mx2-(1-2m)x+m+4=0
3. Giải các pt sau
a,\(\sqrt{2x+9}=x-3\) b,\(\sqrt{x-1}+\sqrt{3-x}+2\sqrt{\left(x+1\right)\left(3-x\right)}=4\)
cho hàm số y=x+m có đồ thị (dm) và đồ thị (Pm) của hàm số y= x2 + 2mx + 3m -2 . tìm tập hợp tất cả các giá trị của tham số m để (dm) cắt (Pm) tại 2 điểm phân biệt A,B sao cho AB= 3\(\sqrt{2}\)
Cho hàm số y = ax^2. Xác định a biết đồ thị hàm số cắt đường thẳng y = -3x + 4 tại điểm A có hoành độ -2
a) Cho hàm số \(y=x^2+2x+3+\left|x-a+1\right|\) có bao nhiêu giá trị nguyên của tham số \(a\in\left[-10;10\right]\) sao cho giá trị nhỏ nhất của hàm số lớn hơn 2
b) Tìm tất cả các giá trị của tham số m để hệ bất pt \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\) có nghiệm
c) Gọi (x;y) là nghiệm của hệ bất pt \(\left\{{}\begin{matrix}x-2y-2\le0\\4x-3y+12\ge0\\x+3y+3\ge0\\2x+y-4\le0\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức F=4x+5y-6