Cho hàm số y = -x2 (P) và đường thẳng (d) đi qua N(-1;-2) và có hệ số góc k
a,CMR với mọi giá trị của k thì đường thẳng (d) luôn cắt (P) tại 2 điểm A và B . Tìm k sao cho A,B nằm về 2 phía của trục tung
b,Gọi (x1,y1);(x2,y2) là tọa độ của các điểm A,B nói trên ,tìm k sao cho tổng S= x1+y1+x2+y2 đạt GTLN
GIÚP MK VỚI MN ƠI , THANKS NHIỀU Ạ
\(\left(d\right):y=kx+b\)
(d) đi qua N(-1;-2) nên ta có: \(-k+b=-2\Leftrightarrow k=b+2\)
\(\Rightarrow\left(d\right):y=\left(b+2\right)x+b\)
a)Hoành độ của A và B là 2 nghiệm của pt: \(x^2+\left(b+2\right)x+b=0\)
\(\Delta=\left(b+2\right)^2-4b=b^2+4>0\)
Vậy đường thẳng (d) luôn cắt (P) tại 2 điểm A\(\left(x_1;y_1\right)\) và B\(\left(x_2;y_2\right)\)
A, B nằm về 2 phía trục tung=>\(x_1,x_2\) trái dấu
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-b-2\left(1\right)\\x_1x_2=b\left(2\right)\end{matrix}\right.\)
Từ (1) suy ra \(b< 0\Leftrightarrow k-2< 0\Leftrightarrow k< 2\)
b)Ta có: \(y_1=-x_1^2;y_2=-x_2^2\)
\(\Rightarrow x_1+y_1+x_2+y_2=x_1-x_1^2+x_2-x_2^2\\ =\left(x_1+x_2+2x_1x_2\right)-\left(x_1+x_2\right)^2\\ =\left(-b-2+2b\right)-\left(b+2\right)^2\\ =b-2-b^2-4b-4\\ =-b^2-3b-6=-\left(b+\dfrac{3}{2}\right)^2-\dfrac{15}{4}\)
\(\Rightarrow\)S đạt GTLN khi\(b=-\dfrac{3}{2}\Leftrightarrow k=\dfrac{1}{2}\)