Cho hàm số y=-x^{3}+3x^{2}-5. Khẳng định nào dưới đây là đúng?
Hàm số đồng biến trên (0;2), nghịch biến trên (-\infty;0) và (2;+\infty) Hàm số đồng biến trên (-\infty;0) và (2;+\infty), nghịch biến trên (0;2) Hàm số đồng biến trên (-1;2), nghịch biến trên (-\infty;-1) và (2;+\infty) Hàm số đồng biến trên (-\infty;-1) và (2;+\infty),nghịch biến trên (-1;2)Hàm số nào dưới đây đồng biến trên R? A.x+1/x-2 B.y=x^2+2x C.y=x^3-x^2+x D.y=x^4-3x^2+2
Tính đạo hàm của các hàm số sau:
a) \(y = (2x^2 - x + 1)^{\frac{1}{3}}\)
b) \(y = (3x+1)^{\pi}\)
c) \(y = \sqrt[3]{\dfrac{1}{x-1}}\)
d) \(y =\log_{3} \left(\dfrac{x+1}{x-1}\right)\)
e) \(y = 3^{x^{2}}\)
f) \(y = \left(\dfrac{1}{2}\right)^{x^2-1}\)
h) \(y = (x+1) . e^{cosx}\)
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
1. Tìm tập xác định của các hàm số sau:
a) \(y = 3(x-1)^{-3}\)
b) \(y = (2 - x^2)^{\frac{2}{5}}\)
c) \(y = (x^2 + x - 6)^{\frac{-1}{3}}\)
d) \(y = \left(\dfrac{1}{x^2-1}\right)^3\)
e) \(y = \log_{3} (x^2-2)\)
f) \(y = \log_{\frac{1}{2}}\sqrt{x-1}\)
g) \(y = \log_{\pi} (x^2+x-6)\)
Cho hàm số \(f\left(x\right)=e^{\sqrt{x^2+1}}\left(e^x-e^{-x}\right)\). Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình \(f\left(m-7\right)+f\left(\dfrac{12}{m+1}\right)< 0\) ?
1.xét sự biến thiên của hàm số
y=\(-x^4+\dfrac{4}{3}x^3+1\)
y=\(-x^4-2x^2+3\)
y=\(\dfrac{x^2-2x+2}{x-1}\)
y=\(\sqrt{16-^{ }x^2}\)
2.tìm m để hàm số nghịch biến trên TXĐ
y=\(x^3+mx^2+mx+1\)
y=\(\dfrac{mx+1}{x+m}\)
y=\(mx^2+2mx+m\)
y=\(\dfrac{mx^2-2x+1}{x-2}\)
Cho hàm đa thức \(y=\left[f\left(x^2+2x\right)\right]'\) có đồ thị cắt trục \(Ox\) tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số \(m=2022m\in Z\) để hàm số \(g\left(x\right)=f\left(x^2-2\left|x-1\right|-2x+m\right)\) có 9 điểm cực trị?
Giúp mình với ạ, mình cảm ơn nhiều♥
cho hàm số \(f\left(x\right)=\dfrac{9^x}{9^x+3}\). Tìm m để phương trình \(f\left(3m+\dfrac{1}{4}\sin x\right)+f\left(\cos^2x\right)=1\) có đúng 8 nghiệm phân biệt thuộc [0;3pi]