Bài 1: Nguyên hàm

B.Trâm

Cho hàm số f(x) thỏa mãn \(\left[f'\left(x\right)\right]^2+f\left(x\right)f''\left(x\right)=15x^4+12x\) ∀x∈R biết

f(0)=f'(0)=1. Tính \(f^2\left(1\right)\)

Nguyễn Việt Lâm
7 tháng 11 2021 lúc 22:36

Vẫn là đạo hàm của tích

Dễ dàng viết được:

\(\left[f'\left(x\right)\right]^2+f\left(x\right).f''\left(x\right)=\left[f\left(x\right)\right]'.f'\left(x\right)+f\left(x\right).\left[f'\left(x\right)\right]'=\left[f'\left(x\right).f\left(x\right)\right]'\)

Do đó giả thiết biến đổi thành:

\(\left[f'\left(x\right).f\left(x\right)\right]'=15x^4+12x\)

Nguyên hàm 2 vế:

\(f'\left(x\right).f\left(x\right)=\int\left(15x^4+12x\right)dx=3x^5+6x^2+C\)

Thay \(x=0\)

\(\Rightarrow f'\left(0\right).f\left(0\right)=C\Rightarrow C=1\)

\(\Rightarrow f'\left(x\right).f\left(x\right)=3x^5+6x^2+1\)

Tiếp tục nguyên hàm 2 vế:

\(\int f\left(x\right).f'\left(x\right)dx=\int\left(3x^5+6x^2+1\right)dx\) với chú ý \(\int f\left(x\right).f'\left(x\right)dx=\int f\left(x\right).d\left[f\left(x\right)\right]=\dfrac{1}{2}f^2\left(x\right)+C\)

Nên:

\(\Rightarrow\dfrac{1}{2}f^2\left(x\right)=\dfrac{1}{2}x^6+2x^3+x+C\)

Thay \(x=0\Rightarrow C=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}f^2\left(x\right)=\dfrac{1}{2}x^6+2x^3+x+\dfrac{1}{2}\)

\(\Rightarrow f^2\left(1\right)\)

Bình luận (0)

Các câu hỏi tương tự
B.Trâm
Xem chi tiết
Crackinh
Xem chi tiết
B.Trâm
Xem chi tiết
Văn Quyết
Xem chi tiết
Văn Quyết
Xem chi tiết
Crackinh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Crackinh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết