Hàm số y=f(x) có đạo hàm f'(x) = (x-1)(x-2)....(x-2019) . Hàm số y=f(x) có tất cả bao nhiêu điểm cực tiểu
A:1008
B:1010
C:1009
D:1011
Ai có bảng biến thiên thì càng tốt
Câu 1: Cho x, y là các số thực lớn hơn1 sao cho \(y^x.\left(e^x\right)^{e^y}\ge x^y.(e^y)^{e^x}\). Tìm giá trị nhỏ nhất của biểu thức p = \(log_x\sqrt{xy}+log_yx\)
Câu 2 Cho hàm số y = f(x) xác định trên R\{1} có đọa hàm y' = \(\frac{1}{x-1}\), Biết f(0) = 2018, f(2) =2019. Tính S= f(3) - f(-1)?
Cho hàm số y=f(x) có đạo hàm là \(f'\left(x\right)=x^2+10x\) , \(\forall x\in R.\) Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left(x^4-8x^2+m\right)\)có đúng 9 điểm cực trị?
A. 16 B. 9 C. 15 D. 10
Giải thích cho mình phần bôi vàng ở dưới ạ, mình cảm ơn nhiều♥
Cho hàm đa thức \(y=\left[f\left(x^2+2x\right)\right]'\) có đồ thị cắt trục \(Ox\) tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số \(m=2022m\in Z\) để hàm số \(g\left(x\right)=f\left(x^2-2\left|x-1\right|-2x+m\right)\) có 9 điểm cực trị?
Giúp mình với ạ, mình cảm ơn nhiều♥
Câu 1:Tìm TXĐ: y=(-x2-3x-2)-2
Câu 2:Tìm TXĐ của hàm số: y=log3\(\left(\dfrac{10-x}{x^2-3x+2}\right)\)
Câu 3:Tính đạo hàm: a)y=\(^{13^x}\)
b)y=ln(\(x+\sqrt{1+x^2}\))
Tìm tất cả các hàm số liên tục \(f:R\rightarrow R\) thỏa mãn: \(f\left(4xy\right)=f\left(2x^2+2y^2\right)+4\left(x-y\right)^2,\forall x,y\in R\)
1. Tìm tập xác định của các hàm số sau:
a) \(y = 3(x-1)^{-3}\)
b) \(y = (2 - x^2)^{\frac{2}{5}}\)
c) \(y = (x^2 + x - 6)^{\frac{-1}{3}}\)
d) \(y = \left(\dfrac{1}{x^2-1}\right)^3\)
e) \(y = \log_{3} (x^2-2)\)
f) \(y = \log_{\frac{1}{2}}\sqrt{x-1}\)
g) \(y = \log_{\pi} (x^2+x-6)\)
Tính đạo hàm của các hàm số sau:
a) \(y = (2x^2 - x + 1)^{\frac{1}{3}}\)
b) \(y = (3x+1)^{\pi}\)
c) \(y = \sqrt[3]{\dfrac{1}{x-1}}\)
d) \(y =\log_{3} \left(\dfrac{x+1}{x-1}\right)\)
e) \(y = 3^{x^{2}}\)
f) \(y = \left(\dfrac{1}{2}\right)^{x^2-1}\)
h) \(y = (x+1) . e^{cosx}\)
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2