Tính đạo hàm của các hàm số sau:
a) \(y = (2x^2 - x + 1)^{\frac{1}{3}}\)
b) \(y = (3x+1)^{\pi}\)
c) \(y = \sqrt[3]{\dfrac{1}{x-1}}\)
d) \(y =\log_{3} \left(\dfrac{x+1}{x-1}\right)\)
e) \(y = 3^{x^{2}}\)
f) \(y = \left(\dfrac{1}{2}\right)^{x^2-1}\)
h) \(y = (x+1) . e^{cosx}\)
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
Tính đạo hàm của các hàm số sau:
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
1. Tìm tập xác định của các hàm số sau:
a) \(y = 3(x-1)^{-3}\)
b) \(y = (2 - x^2)^{\frac{2}{5}}\)
c) \(y = (x^2 + x - 6)^{\frac{-1}{3}}\)
d) \(y = \left(\dfrac{1}{x^2-1}\right)^3\)
e) \(y = \log_{3} (x^2-2)\)
f) \(y = \log_{\frac{1}{2}}\sqrt{x-1}\)
g) \(y = \log_{\pi} (x^2+x-6)\)
Tìm tập xác định của các hàm số :
a) \(y=\log_{0,3}\frac{x-4}{x+4}\)
b) \(y=\log_{\pi}\left(2^x-2\right)\)
c) \(y=\sqrt{\log_3\left(x^2-3x+2\right)+4-x}\)
d) \(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x-8}}}\)
Tính đạo hàm của hàm số :
\(y=e^{\sqrt[3]{x^2+1}-x}+3^{3x-1}\)
Tìm tập xác định và tính đạo hàm của các hàm số :
a) \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\)
b) \(y=\left(x^2+x-6\right)^{\frac{-1}{3}}\)
giải hệ
\(\left\{{}\begin{matrix}y\left[log_2\left(x-3\right)+log_3y\right]=x+1\\x^3-3x-y^3-6y^2-9y-2+ln\dfrac{x-1}{y+1}=0\end{matrix}\right.\)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
Chứng minh hàm số sau đây thỏa mãn hệ thức :
Nếu \(y=\frac{1+\ln x}{x\left(1-\ln x\right)}\) thì \(y'=\frac{2xy}{x^2+1}+e^x\left(x^2+1\right)\)