Cho hàm số f: [0,16]➝ R
x➝ y=√x
Tìm tập xác định của hàm số sau
A. D=R B. D=(0;+∞) C. D= [0; +∞] D. [0;16]
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
Khảo sát và vẽ đồ thị hàm số khi m = 2.Tìm m để đồ thị hàm số (dm) đi qua điểm A(4, -1).Tìm m để hàm số nghịch biến trên tập xác định.Tìm điểm cố định của đồ thị hàm số (dm) đi qua.Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Cho hàm số y=x³+mx²+2mx+3. Tìm điều kiện của m để hàm số đồng biến trên khoảng (0;2).
cho em hỏi y' là sao ạ em ko hiểu bài này
tập con S của tập số thực R gọi là đối xứng nếu với mọi x thuộc S , ta đều có -x thuộc S. Em có nhận xét gì về tập xác định của 1 hàm số chẵn (lẻ)?từ nhận xét đó em có kết luận gì về tính chẵn - lẻ của hàm số y bằng căn bậc 2 của x? tại sao?
cho hàm số \(y=x^2-2x+2\) có đồ thị là Parabol (P) và đường thẳng d:\(y=x+m\). Gọi \(m_o\) là giá trị của m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(OA^2+OB^2=10\). Tìm m
Cho hàm số \(y=\dfrac{\sqrt{x}}{x^2+2x-m}\) có tập xác định là D. Tất cả giá trị của m để D=[0;+∞)
giải hộ mình chi tiết + giải thích bài này với ^^
Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(y=f\left(x\right)=\sqrt{x^2-3mx+4}\) có tập xác định là D=R
xét tính đơn điệu của các hàm số sau :
a) y=1/2x+5
b)y=3x-1
c)y=|2x-1|
d)y=\(\sqrt{x^2}+6x+9\)
e)y=|1-x| +|2x+4|
f) y=\(\sqrt{x^2-4+4}\)-2|x-1|