Gọi là tập hợp gồm các giá trị thực của tham số m để phương trình \(x-2\sqrt{x+2}-m-3=0\) có 2 nghiệm phân biệt . Mệnh đề đúng là :
\(A,S=\left(-6;-5\right)\)
\(B,S=(-6;-5]\)
\(C,S=[-6;-5)\)
\(D,S=\left(-6;+\infty\right)\)
Sử dụng dấu bất đẳng thức để viết các mệnh đề sau :
a) x là số dương
b) y là số không âm
c) Với mọi số thực \(\alpha,\left|\alpha\right|\) là số không âm
d) Trung bình cộng của hai số dương a và b không nhỏ hơn trung bình nhân của chúng
Cho f(x) = ax2 + bx + c (a khác 0) có delta = b2-4ac <0 khi đó mệnh đề nào đúng , vì sao ?
1. f(x) > 0 , với mọi x thuộc R
2. f(x)<0 , với mọi x thuộc R
3. f(x) không đổi dấu
4. Tồn tại x để f(x) = 0
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
Câu 4. Cho a,b,c là ba số thực dương . Chứng minh rằng \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Câu 4. Cho a,b,c là ba số thực dương . Chứng minh rằng \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\).
Cho x,y là hai số thực thỏa mãn x > y
và xy = 1000. Biết biểu thức \(F=\frac{x^2+y^2}{x-y}\)
đạt giá trị nhỏ nhất khi \(\hept{\begin{cases}x=a\\y=b\end{cases}}\)
Tinh \(P=\frac{a^2+b^2}{1000}\)
cho các số thực dương a,b,c thỏa a+b+c=3. tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{a}+\frac{1}{b}-c\)
a/ Hiệu các bình phương cuản hai số a và b
b/Tổng các bình phương của hai số x, y nhân với hai lần tích của hai số đó
c/ Lập phương của hiệu số m và n chia cho 2015