Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
cho x,y thỏa mãn 1≤y≤2 và xy+2≥2y. tìm GTNN của \(M=\dfrac{x^2+4}{y^2+1}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
cho các số thực dương x,y thỏa mãn \(x+\dfrac{1}{y}\le1\) tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)