câu a) chứng minh cái gì vậy bạn
câu a) chứng minh cái gì vậy bạn
Cho hai đường tròn (O) và (O') ở ngoài nhau. Đường nối tâm O' cắt các đường tròn (O) và (O') lần lượt tại các điểm A, B, C, D theo thứ tự trên đường thẳng. Kẻ tiếp tuyến chung ngoài EF, E ϵ (O), F ϵ (O'). M là giao điểm của AE và DF, N là giao điểm của EB và EC. Chứng minh:
a) MENF là hình chữ nhật
b) MN vuông góc AD
c) ME.MA=MF.MD
Từ điểm A nằm ngoài (O) kẻ các tiếp tuyến AB và AC với đường tròn. Gọi CD là dây cung của (O) song song với AB. E là giao điểm của AD với đường tròn. M là giao điểm của CE và AB. Chứng minh: M là trung điểm của AB
Cho 2 đường tròn (O) và (O') nằm ngoài nhau, Vẽ các tiếp tuyến chung ngoài AB vad CD. Vẽ tiếp tuyến chung trong EF(A,C,E thuộc(O);B,D,F thuộc(O'). Gọi giao điểm của EF với AB,CD theo thứ tự là MN. CHứng minh
a/ MN=AB
b/MN=NF+ME+BF
Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.
Qua điểm A nằm ngoài đường tròn (O) Kẻ tiếp tuyến AM,AN với M,N là tiếp điểm. a) CMR: bốn điểm A,M,O,N cùng thuộc 1 đường tròn. b) Vẽ cát tuyến ABC tới (O) sao cho tia AO nằm giữa tia AM và tia AC.Chứng minh rằng: AM2 = = AB.AC c) Gọi H là giao điểm của AO và MN.CMR: 4 điểm B,H,O,C cùng thuộc một đường tròn. d) CMR: HN là tia phân giác của góc BHC.
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
Từ một điểm nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến MA, MB (A, B là các tiếp điểm). Hai đường cao AE, BF của ΔAMB cắt nhau tại H.
a, C/m: Tứ giác ABEF là tứ giác nội tiếp
b, Gọi I là trung điểm của AB. C/m: 4 điểm O, H, I, M thẳng hàng
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau