Câu 3: Trang 131 sách VNEN 9 tập 1 Cho hai đường tròn (O; R) và (O'; R') cắt nhau tại A và B (R > R'). Gọi M là trung điểm của OO'. Kẻ đường thẳng vuông góc với MA tại A, đường thẳng này cắt các đường tròn (O; R) và (O'; R') theo thứ tự tại C và D (khác A). a) Chứng minh rằng AC = AD. b) Lấy K sao cho M là trung điểm của AK. Chứng minh rằng KB vuông góc với AB. c) Kẻ đường kính AE của đường tròn (O) và đường kính AF của (O'). Chứng minh rằng bốn điểm E, K, B, F thẳng hàng và OO' song song với EF. d) Chứng minh K là trung điểm của EF.
Cho đường tròn (O),(O') cắt nhau tại A,B. Gội I là trung điểm OO', qua A vẽ đường thẳng vuông góc với AI cắt đường tròn (O) tại C, (O') tại D sao cho C và D khác A. CM: AC=AD
Cho (O) và (O') cắt nhau tại ở A và B. Gọi M là td của OO', I là điểm đối xứng với A qua M .
a) Chứng minh IB vuông góc với AB
b) Đường vuông góc với MA tại A cắt các đường tròn (O) và (O') theo thứ tự tại C,D . Chứng minh rằng AC=AD
Cho (O;R).A nằm ngoài đường tròn sao cho OA=2R.Kẻ tiếp tuyến AB và AC với (O) (B,C là tiếp điểm) Đoạn thẳng OA cắt (O) tại I đường thẳng qua O và vuông góc với OB cắt AC tại K a) chứng minh tam giác OAK cân tại A b)CB vuông góc với OA c) Đường thẳng KI cắt AB tại M. Chứng minh KM là tiếp tuyến của (O)
Cho đường tròng tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi I là trung điểm của OA. Qua I vẽ dây MQ vuông góc với OA ( M thuộc cung Ac; Q thuộc cung AD; Q thuộc cung À). Đường thẳng vuông góc với MQ tại M cắt đường tròn tại P A/ chứng minh: a) ứ giác PMIO là hình thang vuông, b) ba điểm P, Q và O thẳng hàng B/ cho AC=a căn 2. Tính bán kính của đường tròn đã cho và khoảng cách từ O đến đường thẳng AC theo a
: Cho đường tròn (O; R) có đường kính AC và dây cung BC = R. a) Tính số đo của  và độ dài dây AB theo R. b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn (O). c) Vẽ dây BE ⊥ AC tại M . Chứng minh tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R. d)Tiếp tuyến tại C của (O) cắt DB tại K . Chứng minh AK, CD, BE đồng quy. MK CHỈ CẦN CÂU C THÔI Ạ
Cho (O;R) và điểm A sao cho OA = 2R . Vẽ các tiếp điểm AB , AC với đường tròn (O) (B,C là các tiếp điểm)
a. Chứng minh ∆ABC đều
b. Đường vuông góc với OB tại O cắt AC tại S. Chứng minh ∆SOA cân
c. Gọi I là trung điểm của OA
Chứng minh SI là tiếp tuyến của đường tròn tâm O. Tính độ dài SI theo R
Cho hai đường tròn (O) và (O') tiếp xúc ngoài ở A . Tiếp tuyến chung ngoài của hai đường tròn , tiếp xúc với đường tròn (O) ở M , tiếp xúc với đường tròn (O') ở N . Qua A kẻ đường vuông góc với OO' cắt MN ở I
a) Chứng minh tam giác AMN , IOO' là tam giác vuông
b) Chứng minh rằng MN là tiếp tuyến của đường tròn đường kính OO'
c) Cho biết OA=8cm , O'A =4,5cm . Tính độ dài MN