a, Xét \(\Delta AOD\) và \(\Delta BOC\) có:
\(OA=OB\)
\(\widehat{AOD}=\widehat{BOC}\) \(\text{(đối đỉnh)}\)
\(OC=OD\)
\(\Rightarrow\Delta AOD=\Delta BOC\) \(\left(c-g-c\right)\)
\(\Rightarrow\widehat{D}=\widehat{C}\Rightarrow AD//BC\)
b, Từ câu a, ta có:
\(AD//BC\Rightarrow\widehat{A}=\widehat{B}\) \(\text{(cặp góc so le trong)}\)
Xét \(\Delta AOE\) và \(\Delta BOF\) có:
\(OA=OB\)
\(\widehat{A}=\widehat{B}\)
\(AE=BF\)
\(\Rightarrow\Delta AOE=\Delta BOF\left(c-g-c\right)\)
\(\widehat{AOE}=\widehat{BOF}\)
c,Ta có:\(\widehat{BOF}+\widehat{AOF}=180\) \(\text{(Hai góc kề bù)}\)
Mà \(\widehat{BOF}=\widehat{AOE}\) \(\text{(theo câu a)}\)
\(\Rightarrow\widehat{AOE}+\widehat{AOF}=180\)
\(\Leftrightarrow\widehat{EOF}=180\)
\(\Rightarrow E;O;F\) \(\text{thẳng hàng}\)