Bài 9: Tích của một vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho hai điểm phân biệt A và B.

a) Hãy xác định điểm K sao cho \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OK}  = \frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB} .\)

Hà Quang Minh
24 tháng 9 2023 lúc 20:21

a)

Cách 1:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\( \Leftrightarrow \overrightarrow {KA}  =  - 2\overrightarrow {KB} \)

Suy ra vecto \(\overrightarrow {KA} \) và vecto\(\;\overrightarrow {KB} \) cùng phương, ngược chiều và \(KA = 2.KB\)

\( \Rightarrow K,A,B\)thẳng hàng, K nằm giữa A và B thỏa mãn: \(KA = 2.KB\)

Cách 2:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\(\begin{array}{l} \Leftrightarrow \left( {\overrightarrow {KB}  + \overrightarrow {BA} } \right) + 2\overrightarrow {KB}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  + \overrightarrow {BA}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {KB}  = \frac{1}{3}\overrightarrow {AB} \end{array}\)

Vậy K thuộc đoạn AB sao cho \(KB = \frac{1}{3}AB\).

b)

Với O bất kì, ta có:

\(\frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB}  = \frac{1}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KA} } \right) + \frac{2}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KB} } \right) = \left( {\frac{1}{3}\overrightarrow {OK}  + \frac{2}{3}\overrightarrow {OK} } \right) + \left( {\frac{1}{3}\overrightarrow {KA}  + \frac{2}{3}\overrightarrow {KB} } \right) = \overrightarrow {OK}  + \frac{1}{3}\left( {\overrightarrow {KA}  + 2\overrightarrow {KB} } \right) = \overrightarrow {OK}\)

Vì \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \)

Vậy với mọi điểm O, ta có \(\overrightarrow {OK}  = \frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB} .\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết