Bài 9: Tích của một vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho vecto \(\overrightarrow {AB}  = \overrightarrow a \). Hãy xác định điểm C sao cho \(\overrightarrow {BC}  = \overrightarrow a \)

a) Tìm mối quan hệ giữa \(\overrightarrow {AB} \) và \(\overrightarrow a  + \overrightarrow a \)

b) Vecto \(\overrightarrow a  + \overrightarrow a \) có mối quan hệ như thế nào về hướng và độ dài đối với vecto \(\overrightarrow a \)

Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:49

Tham khảo:

Gọi M, N lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).

Từ B, M, N ta dựng hình bình hành BMNC.

Khi đó: \(\overrightarrow {MN}  = \overrightarrow {BC} \) hay \(\overrightarrow a  = \overrightarrow {BC} \).

\( \Rightarrow \overrightarrow a  + \overrightarrow a  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

a) Vì  \(\overrightarrow {AB}  = \overrightarrow a  = \overrightarrow {BC} \) nên A, B, C thẳng hàng và B là trung điểm của AC.

Vậy \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)

b) Ta có:  \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)

Mà \(\overrightarrow {AB}  = \overrightarrow a \) nên:  \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow a \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow a } \right|\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết