Xét ΔBAE và ΔBDC có
BA=BD
\(\widehat{ABE}\) chung
BE=BC
Do đó: ΔBAE=ΔBDC
Suy ra: AE=CD
Xét ΔMAC và ΔMDE có
\(\widehat{MCA}=\widehat{MED}\)
AC=DE
\(\widehat{MAC}=\widehat{MDE}\)
Do đó: ΔMAC=ΔMDE
Suy ra: MA=MD
Xét ΔBAE và ΔBDC có
BA=BD
\(\widehat{ABE}\) chung
BE=BC
Do đó: ΔBAE=ΔBDC
Suy ra: AE=CD
Xét ΔMAC và ΔMDE có
\(\widehat{MCA}=\widehat{MED}\)
AC=DE
\(\widehat{MAC}=\widehat{MDE}\)
Do đó: ΔMAC=ΔMDE
Suy ra: MA=MD
cho góc xAy khác góc bẹt trên tia Ax lấy điểm M,N (AM<AN) trên tia Ay lấy điểm E,D sao cho AM=AE, AN=AD I là giao điểm của MD và EN Chứng minh rằng MD=EN, Tam giác INM=tam giác IDE, AI là phân giác góc xAy, AI vuông góc với NB
Cho tam giác ABC có góc A = 60 độ. Các tia phân giác của góc B và C lần lượt cắt các cạnh AC và AB tại D và E.
a, Chứng minh BE + CD = BC
b, Gọi I là giao điểm của BD và CE. Tính số đo các góc của tam giác IDE
Cho tam giác ABC vuông tại A ,góc ABC bằng 50 Độ a Tính góc ACB b Kẻ tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E Sao cho BA=BE.Chứng minh tam giác BAD =tam giác BED từ đó suy ra DE vuông góc với BC c Gọi M Là giao điểm của AB và PE CMR: DM=DC
Cho tam giác ABC nhọn (AB<AC). Gọi D là trung điểm của cạnh BC. Trên tia đối của tia DA lấy E sao cho DA=DE. Kẻ BM vuông góc với AD tại M, CN vuông góc với DE tại N.
a, Cm tam giác ABD= tam giác ECD. Suy ra AB//CE.
b, Cm BM // CN và BM=CN
c, Kẻ AH vuông góc với BD tại H, EK vuông góc với DC tại K. Đoạn AH cắt BM tại O, đoạn EK cắt CN tại I. Cm O,D,I thẳng hàng.
Cho tam giác ABC cân tại A. Tia Ax vuông góc với BC tại H.
a, Chứng minh : AH là tia phân giác của góc BAC.
b, Từ H lần lượt kẻ các tia vuông góc với AB tại E, với AC tại F. Chứng minh : AE = AF.
Giúp với ạ:D
Cho tam giác ABC, M là trung điểm BC .Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m
a) Tam giác AMB = tam giác DMC
b) CD//AB
c) Trên cạnh AB lấy điểm E, trên cạnh DC lấy điểm F sao cho AE=DF. C/m ba điểm E,M,F thẳng hàng
Cho góc xOy khác góc bẹt ,Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot kẻ đường vuông góc với Ot,nó cắt Ox và Oy theo thứ tự ở A và B
a)Chứng minh H là chung điểm của AB
b)lấy điểm C thuộc tia Ot,chứng minh rằng ACO = BCO
Cho góc nhọn xoy trên ox lấy điểm A, B sao cho 0<OA<OB. Trên tia Oy lấy 2 điểm C, D
sao cho OA=OC, OB=OD. Gọi M là giao điểm của AD và BC, N là giao điểm của ON và BD. Chứng minh rằng:
a) △OAD bằng △OCB
b) △ADM bằng △CDM
c) OM là tia phân giác của góc xOy
d) ON ⊥ BD