a: Xét ΔACB cân tại A có AH là đường cao
nên AH là đường phân giác
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{HAE}=\widehat{HAF}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
a: Xét ΔACB cân tại A có AH là đường cao
nên AH là đường phân giác
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{HAE}=\widehat{HAF}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc với BC. Chứng minh rằng AB = BE ?
Cho tam giác ABC có góc A < 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ AD vuông góc với AB và AD = AB, trên nửa mặt phẳng bờ AC có chứa điểm B vẽ AE vuông góc với AC và AE = AC. Kẻ AH vuông góc với ED tia AH cắt BC tại M. chứng minh M là trung điểm của BC
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
Cho tam giác ABC vuông tại A ,góc ABC bằng 50 Độ a Tính góc ACB b Kẻ tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E Sao cho BA=BE.Chứng minh tam giác BAD =tam giác BED từ đó suy ra DE vuông góc với BC c Gọi M Là giao điểm của AB và PE CMR: DM=DC
Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC các tam giác vuông tại A là ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng :
a) DM = AH
b) MN đi qua trung điểm của DE
Cho tam giác ABC nhọn (AB<AC). Gọi D là trung điểm của cạnh BC. Trên tia đối của tia DA lấy E sao cho DA=DE. Kẻ BM vuông góc với AD tại M, CN vuông góc với DE tại N.
a, Cm tam giác ABD= tam giác ECD. Suy ra AB//CE.
b, Cm BM // CN và BM=CN
c, Kẻ AH vuông góc với BD tại H, EK vuông góc với DC tại K. Đoạn AH cắt BM tại O, đoạn EK cắt CN tại I. Cm O,D,I thẳng hàng.
Cho tam giác ABC vuông tại A,Tia phân giác góc B cắt AC ở D ,kẻ DE vuông góc BC .Chứng Minh rằng
a.tam giác ABD=tam giác EBD
b.AB=BE
Cho tam giác ABC có góc A < 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ AD vuông góc với AB và AD = AB, trên nửa mặt phẳng bờ AC có chứa điểm B vẽ AE vuông góc với AC và AE = AC. Kẻ AH vuông góc với ED tại H. Chứng minh đường thẳng AH đi qua trung điểm của cạnh BC.