a, - Xét \(\Delta OBC\) và \(\Delta OAD\) có :
\(\left\{{}\begin{matrix}OA=OB\left(gt\right)\\\widehat{AOB}\left(chung\right)\\OD=OC\left(gt\right)\end{matrix}\right.\)
=> \(\Delta OBC\) = \(\Delta OAD\) ( c - g - c )
=> AD = BC ( cạnh tương ứng )
=> \(\widehat{ACE}=\widehat{BDE}\) ( góc tương ứng )
b, Ta có : \(\left\{{}\begin{matrix}OA=OB\\OC=OD\end{matrix}\right.\) ( gt )
Mà \(\left\{{}\begin{matrix}OD=OB+BD\\OC=OA+AC\end{matrix}\right.\)
=> AC = BD .
- Xét \(\Delta ACE\) và \(\Delta BDE\) có :
\(\left\{{}\begin{matrix}\widehat{ACE}=\widehat{BDE}\left(cmt\right)\\AC=BD\left(cmt\right)\\\widehat{AEC}=\widehat{BED}\left(>< \right)\end{matrix}\right.\)
=> \(\Delta ACE\) = \(\Delta BDE\) ( g - c - g )