a) Xét \(\Delta\)OAD và \(\Delta\)OCB có:
OA = OC (gt)
\(\widehat{O}\) chung
OD = OB (gt)
=> \(\Delta\)OAD = \(\Delta\)OCB (c.g.c)
=> AD = CB (2 cạnh t/ư)
b) Vì \(\Delta\)OAD = \(\Delta\)OCB (câu a)
=> \(\widehat{ODA}\) = \(\widehat{OBC}\) (2 góc t/ư)
hay \(\widehat{CDI}\) = \(\widehat{ABI}\)
và \(\widehat{OAD}\) = \(\widehat{OCB}\) (2 góc t/ư)
Ta có: \(\widehat{OAD}\) + \(\widehat{IAB}\) = 180o (kề bù)
\(\widehat{OCB}\) + \(\widehat{ICD}\) = 180o (kề bù)
mà \(\widehat{OAD}\) = \(\widehat{OCB}\)
=> \(\widehat{IAB}\) = \(\widehat{ICD}\) Lại có: OA + AB = OB OC + CD = OD mà OA = OC; OB = OD => AB = CD Xét \(\Delta\)BAI và \(\Delta\)DCI có:\(\widehat{IAB}\) = \(\widehat{ICD}\) (c/m trên)
BA = DC (c/m trên)
\(\widehat{CDI}\) = \(\widehat{ABI}\) (c/m trên)
=> \(\Delta\)BAI = \(\Delta\)DCI (g.c.g)
=> AI = IC (2 cạnh t/ư)
c) Gọi giao điểm của OI và BD là E.
Do \(\Delta\)BAI = \(\Delta\)DCI (câu b)
=> AI = CI (2 cạnh t/ư)
Xét \(\Delta\)AOI và \(\Delta\)COI có:
AO = CO (gt)
OI chung
AI = CI (c/m trên)
=> \(\Delta\)AOI = \(\Delta\)COI (c.c.c)
=> \(\widehat{AOI}\) = \(\widehat{COI}\) (2 góc t/ư)
hay \(\widehat{BOE}\) = \(\widehat{DOE}\)
Xét \(\Delta\)BEO và \(\Delta\)DEO có:
BO = DO (gt)
\(\widehat{BOE}\) = \(\widehat{DOE}\) (c/m trên)
OE chung
=> \(\Delta\)BEO = \(\Delta\)DEO (c.g.c)
=> \(\widehat{BEO}\) = \(\widehat{DEO}\) (2 góc t/ư)
mà \(\widehat{BEO}\) + \(\widehat{DEO}\) = 180o (kề bù)
=> \(\widehat{BEO}\) = \(\widehat{DEO}\) = 90o
Do đó OE \(\perp\) BD hay OI \(\perp\) BD.