\(\lim\limits_{x\rightarrow4^-}f\left(x\right)=\lim\limits_{x\rightarrow4^-}\left(3x+1\right)=13\)
\(\lim\limits_{x\rightarrow4^+}f\left(x\right)=\lim\limits_{x\rightarrow4^+}\frac{x^2-x-12}{x-4}=\lim\limits_{x\rightarrow4^+}\frac{\left(x+3\right)\left(x-4\right)}{x-4}=\lim\limits_{x\rightarrow4^+}\left(x+3\right)=7\)
Do \(\lim\limits_{x\rightarrow4^-}f\left(x\right)\ne\lim\limits_{x\rightarrow4^+}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow4}f\left(x\right)\) không tồn tại