Ôn tập chương 2: Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\) Hãy tính giá trị của biểu thức sau: \(A=f\left(\dfrac{1}{2017}\right)+f\left(\dfrac{2}{2017}\right)+...+f\left(\dfrac{2015}{2017}\right)+f\left(\dfrac{2016}{2017}\right)\)

Akai Haruma
17 tháng 10 2018 lúc 8:42

Lời giải:

Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)

\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)

Do đó:

\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)

\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)

............

\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)

Cộng theo vế:

\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)

\(=\underbrace{1+1+1...+1}_{1008}=1008\)


Các câu hỏi tương tự
Võ Thùy Trang
Xem chi tiết
Trần Quân
Xem chi tiết
Nguyễn Ngọc Thiên Trang
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Đậu xanh nhỏ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
illumina
Xem chi tiết
Bảo
Xem chi tiết
Bảo
Xem chi tiết