Ôn tập cuối năm môn Hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho elip (E) có phương trình \(\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) và điểm \(A\left(1;2\right)\)

a) Tìm độ dài trục lớn, trục nhỏ và tiêu cự của (E)

b) Viết phương trình đường thẳng  \(\Delta\) đi qua điểm A và cắt (E) tại \(M_1\) và \(M_2\) sao cho \(AM_1=AM_2\)

 
tu thien
9 tháng 4 2017 lúc 22:53

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy : (E) : \frac{x^2}{4} +\frac{y^2}{1} =1


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
DuaHaupro1
Xem chi tiết
gấu béo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết