cho đường tròn tâm O và một điểm A nằm ngoài đường tròn tâm (O) . Từ A vẽ 2 tiếp tuyên AB, AC của Đường tròn O ( B và C là 2 tiếp điểm ).Gọi H là giao điểm của OA và BC .
a) Cm: OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD của đường tròn (O) , đường thẳng AD cắt (O) tại E (khác D) .Cm:AE.AD=AH.AO
C)Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F.CM:FD là tiếp tuyến của (O)
các bạn cm giúp mình phần c nhé <3
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
mà OB=OC
nên OA là đường trung trực của BC
=>OA\(\perp\)BC
b: Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)