Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2
Cho đường tròn (O,3cm) và điểm S cách O một khoảng bằng 5cm. Qua S kẻ tiếp tuyến SB với đường tròn (O) (B là tiếp điểm). Qua B kẻ đường thẳng vuông góc với OS cắt OS và (O) lần lượt tại K, C. a, Tính BC b, Chứng minh SC là tiếp tuyến của (O) c, Lấy N là điểm bất kì trên cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn cắt SB, SC lần lượt tại E và F. Tính chu vi tam giác SEF
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB với đường tròn (O). Qua điểm M kẻ cát tuyến MCD với đường tròn (O), tức là đường thẳng đi qua điểm M và cắt đường tròn tại hai điểm là C, D). Gọi I là trung điểm của dây CD, Khi đó MAOIB có là ngũ giác nội tiếp hay không ?
Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho số đo cung AB = 60o; số đo cung BC = 90o và số đo cung CD = 120o.
a) Tứ giác ABCD là hình gì?
b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.
c) Tính độ dài các cạnh của tứ giác ABCD theo R.
Cho đường tròn tâm O bán kính R=6cm và điểm A cách O một khoảng 10cm từ A vẽ tiếp tuyến AB ( B là tiếp điểm) và cát tuyến bất kỳ ADC ( C nằm giữa A và D) gọi I là trung điểm của đoạn CD
a) tính độ dài AB, số đo góc OAB
b) chứng minh: bốn điểm A,B,O và I cùng thuộc 1 đường tròn
c) chứng minh: AC.AD=AI^2-IC^2. Từ đó suy ra tính AC.AD không đổi khi C thay đổi trên đường tròn (O)
Cho 2 đường tròn O và O' có cùng bán kính R cắt nhau tại A và B. Đoạn nối tâm OO' cắt đường tròn O và O' lần lượt là M và N.Cho bt MN=6cm; AB=12
a/CM ON=O'M
b/tính độ dài đoạn nối tâm
Cho đường tròn (O; R) , dây AB cố định (AB không đi qua O). I là trung điểm của AB. Trên cung lớn AB lấy 1 điểm C. Các đường cao AD, BE cắt nhau tại H và cắt đường tròn tại điểm thứ hai lần lượt ở M và N. Gọi K là trung điểm của CH. Chứng minh:
a) Tứ giác ABDE nội tiếp
b) MN // DE.
c) Đoạn thẳng CK có độ dài không đổi khi C di chuyển trên cung lớn AB.
cho góc XOY và một đường tròn tâm I tiếp xúc với 2 cạnh của góc tại A và B . Qua A kẻ đường thẳng vuông góc với OB , cắt đường tròn tại điểm C . Gọi K là trung điểm của đoạn thẳng OB , đương thẳng AK cắt đường tròn tại E.
a) CM OAIB nội tiếp
b) CM KO(bình phương) = KA.KE