Bài 1:Cho đường tròn (O;R), đường kính AB, dây cung BC=R
a, Tính các cạnh và các góc chưa biết của tam giác ABC theo R
b, Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) ở D
CM: OD là đường trung trực của AC
tam giác ADC là hình gì? Vì sao?
c, CM: DC là tiếp tuyến của đường tròn (O)
d, Đường thẳng OD cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác ADC
Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
: Cho đường tròn (O; R) có đường kính AC và dây cung BC = R. a) Tính số đo của  và độ dài dây AB theo R. b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn (O). c) Vẽ dây BE ⊥ AC tại M . Chứng minh tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R. d)Tiếp tuyến tại C của (O) cắt DB tại K . Chứng minh AK, CD, BE đồng quy. MK CHỈ CẦN CÂU C THÔI Ạ
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R)có đường kính là AB.Dây CD vuông góc với AB tại H.Gọi I,K lần lượt là chân các đường vuông góc kẻ từ H đến AC và BC.
a)Chứng minh rằng tam giác ACD cân
b)Tính độ dài dây AC theo R khi H là trung điểm của AO
c)Chứng minh rằng:CI,CA=CK.CB
d)Chứng minh IK là tiếp tuyến của đường tròn ngoại tiếp tam giác HBK
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Cho tam giác ABC vuông tại A, có AC= 6 cm, góc ACB bằng 30o. Vẽ (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H
a) Tính BC.
b) Chứng minh CDE là tam giác đều.
c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh BDM và BMC đồng dạng.
d) Gọi K là hình chiếu vuông góc của H lên EC và I là trung điểm HK. Chứng minh: DK vuông góc với CI.