Cho tam giác ABC nhọn (AB<AC) có hai đường cao BD và CE cắt nhau tại H1) Chứng minh bốn điềm B E D C cừng thuộc một đường tròn.2) Gọi I là trung điểm của BC, K là điểm đối xứng với H qua I. Chứng minh tam giác ACK là tam giác vuông.3) CHứng minh: BE.BA + CD.CA=4IC2
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
Chỉ cho mình các bài tập này tí
1) Cho (O) và A là điểm nằm bên ngoài đường tròn. Kẻ tiếp tuyến AB;AC với đường tròn (B,C là tiếp tuyến)
a/ Chứng minh OA⊥BC
b/ Tính độ dài các cạnh của tam giác ABC biết OB=2cm; OC= 4cm?
2) Xác định a và b của hàm số y=a.x+b, biết đồ thị của nó song song với đường thẳng và cắt trục tung tại điểm có tung độ là 5?
3) Cho đường tròn tâm O đường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA ( K và A nằm cùng phía đối với BC). Tiếp tuyến với đường tròn(O) tại C cắt OK ở I,OI cắt AC tại H
a/ Chứng minh tam giác ABC vuông tại A
b/ Chứng minh rằng IA là tiếp tuyến của đường tròn (O)
c/ Cho BC= 30cm, AB=18cm, tính các độ dài OI,CI
Cho Tam giác ABC vuông tại A, đường cao AH,gọi E và F theo thứ tự là hình chiếu vuông góc của H lên AB, AC. a, chứng minh AE.AB=AF.AC B,tam giác AFE đồng dạng tam giác ABC C, chứng minh AH^3= AE.AF.BC D, BC cố định, tìm vị trí của A để EF có độ dài lớn nhất
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho nửa đường tròn đường kính BC = 2R, A là điểm di động trên nửa đường tròn, H là hình chiếu của A trên BC. Gọi D, E thứ tự là hình chiếu của H trên AB, AC. Xác định vị trí của A để:
a) Độ dài DE lớn nhất.
b) SADHE lớn nhất.
Cho hình vuông ABCD. Gọi I là một điểm nẳm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng :
a) Tam giác DIL là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}\) không đổi khi I thay đổi trên cạnh AB
Cho tam giác ABC vuông tại A , AH vuông với BC, AD là đường phân giác.Gọi HM,HN là đường phân giác của tam giác HAB,HAC
a,Chứng minh DM//AC và AD=MN
b,Gọi AP,AQ là đường phân giác của tam giác AHB,AHC. cmr:
PQ2=2PB.CQ
4) cho tam giác ABC có AB = 6cm , AC = 4,5 cm , BC = 7,5 cm . a) C.minh tam giác ABC là hình vuông . b) tính góc B và góc C và đường cao AH . c) lây M bất kì trên cạnh BC . Gọi hình chiếu của M trên AB , AC . Lần lượt là P và Q . C.minh PQ , AM , hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất