cho tam giác ABC cân nội tiếp đường tròn (O;R) , góc A < 90 độ . Gọi H,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cung nhỏ AB,AC lần lượt tai M,N
a) OA vuông góc với MN
b) tam giác ABC phải thêm điều kiện gì để OMAN là hình thoi
Cho tam giác nhọn ABC nội tiếp đường tròn O. Gọi M N, lần lượt là trung điểm của các
cạnh BC và AC. Đường thẳng MN cắt cung nhỏ BC của đường tròn O tại P.
a) Chứng minh rằng tứ giác OMCN nội tiếp.
b) Gọi D là điểm bất kỳ trên AB D A D B , . Đường tròn ngoại tiếp tam giác BPD cắt cạnh BC tại điểm
I khác B K; là giao điểm của hai đường thẳng DI và AC. Chứng minh rằng PK PB PC PD .
c) Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BPD, đường thẳng IG cắt AB tại
E. Chứng minh rằng D di chuyển trên cạnh AB thì tỉ số AD
AE không đổi.
Cho (O;R) có đường kính AB vuông góc với dây cung MN tại H(Hnằm giữa O và B) trên tia MN lấy điểm C nằm ngoài đường tròn(O;R) sao cho đoạn thẳng AC cắt đường tròn (O;R) tại điểm K khác A,2 dây MN và BK cắt nhau ở E
a) Chứng minh AHEK là tứ giác nội tiếp
Cho đường tròng tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi I là trung điểm của OA. Qua I vẽ dây MQ vuông góc với OA ( M thuộc cung Ac; Q thuộc cung AD; Q thuộc cung À). Đường thẳng vuông góc với MQ tại M cắt đường tròn tại P A/ chứng minh: a) ứ giác PMIO là hình thang vuông, b) ba điểm P, Q và O thẳng hàng B/ cho AC=a căn 2. Tính bán kính của đường tròn đã cho và khoảng cách từ O đến đường thẳng AC theo a
Cho đường tròn O,R) , đường kính ab vuông góc với dây cung MN tại điểm H (H nằm giữa O và B ).Trên tia đối của tia NM lấy điểm C sao cho đoạn AC cắt (O) tại K khác A.Hai dây MN và BK cắt nhau ở E
a) Chứng minh tứ giác AHEK nội tiết
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia AC cắt tia MK tại F.Chứng minh tam giác NFK cân và EM*NC=EN*CM
Cho đường tròn (O;R) đường kính AB, dây CD cắt đường kính AB tại điểm E (E khác A và B). Tiếp tuyến d của đường tròn tại B cắt các tia AC, AD lần lượt tại M và N
a) Chứng minh AC.AM = AD.AN = AB^2.
b) Gọi I là trung điểm của BM, chứng minh CI là tiếp tuyến của đường tròn (O).
c) Kẻ CH vuông góc AB, K là trung điểm CH. Chứng minh A,I,K thẳng hàng.
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
Cho tam giác ABC nội tiếp đường tròn (o) đường kính BC . Vẽ dây cung AD của (o) vuông góc với đường kính BC tại H . Gọi M là trung điểm cạnh OC và I là trung điểm cạnh AC . từ M vẽ đường thẳng vuông góc với OC , đường thẳng này cắt tia OI tại N . Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS
a) c/m tam giác ABC vuông tại A và HA = HD
b) c/m : MN // SC và SC là tiếp tuyến của đường tròn (o)
c) gọi K là trung điểm cạnh HC , vẽ đường tròng đường kính AH cắt cạnh AK tại F . C/m BH . HC = AF . AK
d) Trên tia đối của tia BA lấy điểm E sao cho B là trung điểm cạnh AE . C/m ba điểm E,H,F thẳng hàng
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm ˆOABOAB^= ˆCHACHA^.
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH