a: Xét ΔIEM và ΔINE có
góc IEM=góc INE
góc EIM chung
=>ΔIEM đồng dạng với ΔINE
=>IE/IN=IM/IE
=>IE^2=IN*IM
b:Sửa đề: sđ cung EN=142 độ
góc EIN=1/2(sđ cung EN-sđ cung EM)
=1/2(142-98)
=22 độ
a: Xét ΔIEM và ΔINE có
góc IEM=góc INE
góc EIM chung
=>ΔIEM đồng dạng với ΔINE
=>IE/IN=IM/IE
=>IE^2=IN*IM
b:Sửa đề: sđ cung EN=142 độ
góc EIN=1/2(sđ cung EN-sđ cung EM)
=1/2(142-98)
=22 độ
cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn từ A kẻ tiếp tuyến AE với đường tròn tâm (O),C,E là các tiếp điểm vẽ dây EH vuông góc OA tại M a)biết R bằng ,OM bằng 3 cm tính EH b)CM AH là tiếp tuyến của đường tròn tâm O c)đường thẳng qua O vuông góc OA cắt AH tại B vẽ tiếp tuyến BF với đường tròn tâm O (F là tiếp điểm) CM EOF thằng hàng và BF.AE=R^2
Cho (O;R).từ điểm A nằm ngoài (O) sao cho OA=2R vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm ) kẻ dây BC vuông góc OA a) chứng minh : AC là tiếp tuyến của đường tròn(O) b)Qua O vẽ đường vuông góc với OC cắt AB tại M. Chứng minh rằng: tam giác OMA tà tam giác cân c) gọi N là giao điểm của OA với đường tròn (O) ,tia MN Cắt AC tại K .chứng minh rằng:MK là tiếp tuyến của đường tròn (O) d) tính chu vi tam giác AMK theo R
(Vẽ hình bài 1 và làm bài 2)
Bài 1: Cho đường tròn (O, 5cm), điểm M nằm bên ngoài đường tròn. Kẻ các đường tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Biết AMB = 60 độ
a) Chứng minh tam giác AMB là tam giác đều.
b) Tính chu vi tam giác AMB.
c) Tia AO cắt đường tròn ở C. Tứ giác BMOC là hình gì? Vì sao?
Bài 2: Cho nửa đường tròn (O, R), đường kính AB, hai tiếp tuyến Ax, By trên cùng một nửa mặt phẳng bờ AB. Trên tia Ax lấy điểm C, qua O kẻ đường thẳng vuông góc với OC cắt By ở D.
a) Tứ giác ABDC là hình gì? Vì sao?
b) C/m rằng đường tròn ngoại tiếp tam giác COD tiếp xúc với đường thẳng AB tại O.
c) Chứng minh CA.DB = R2
Lớp9: Đường tròn
C1: cho O và A là điểm nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB,AC vs đường tròn ( B,C là tiếp điểm ) a,chứng minh OA VUÔNG BC .
b, vẽ đg kính CD chứng minh BD // AO
C, tính độ dài các cạnh của tam giác ABC BIÉT OB=2cm: OC=4cm
Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E). a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh: OA BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA. c) Chứng minh BC trùng với tia phân giác của góc DHE. d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN
Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Cho đường tròn(O,R) và 1 điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC ( B,C là tiếp điểm). Kẻ đường kính BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a)Chứng minh: OABC và DC//OA.
b) Chứng minh AEDO là hình bình hành.
c) Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh: IK.IC+IA.OI=
Đường tròn (O,R) và điểm M nằm ngoài đường tròn.Từ M kẻ tiếp tuyến ME với đường tròn (O), E là tiếp điểm . Đường thẳng qua E vuông góc OM tại H cắt đường tròn (O) tại điểm thứ hai là F
a, MF là tiếp tuyến
b, Đoạn MO cắt (O) tại I . Chứng minh I là tâm đường tròn nội tiếp tam giác MEF
c, Kẻ đường kính ED , FK vuông ED tại K . P là giao của MD và KF và Q là trung điểm FD . chứng minh H,P,Q thẳng hàng
từ điểm A ở bên ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB và AC (B,C là hai tiếp điểm)
a) chứng minh các điểm A,B,O,C cùng thuộc một đường tròn
b) đoạn OA cắt đường tròn (O;R)tại M. chứng minh M là diểm chính giữa của cung BC và BM là tia phân giác của góc ABC
c)vẽ đường kính BD của (O;R). tiếp tuyến tai D của (O;R) cắt BC tại E, OE cắt AD tại N. chứng minh bốn điểm A,O,N,C nằm trên một đường tròn
b) nếu cho AO=2R thì diện tích tứ giác ABDC theo R là bao nhiêu