Bạn tham khảo lời giải tại đây:
Bạn tham khảo lời giải tại đây:
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm \(\widehat{OAB}\)= \(\widehat{CHA}\).
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến AM, AN với đường tròn (M,N là tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại 2 điểm phân biệt B,C ( O ko thuộc (d), B nằm giữa A và C ). Gọi H là trung điểm BC
a, CM các điểm O,H,M,A,N cùng thuộc 1 đường tròn
b, CM: AM.AN = AB.AC và HA là tia phân giác của góc MHN
c, Lấy E trên MN sao cho BE // AM. CM HE // CM
Cho đường tròn tâm O , bán kính R . Từ điểm C nằm ngoài tròn kế tiếp tuyến CA , CB và cát tuyến CMN với đường tròn (O) (A , B là hai tiếp điểm , M nằm giữa C và N ) . Gọi H là giao điểm của CO và AB.
a. Cm tứ giác AOBC nội tiếp.
b. Cmr : CH . CO = CM . CN
c.Tiếp tuyến tại M cuả đường tròn (O) cắt CA , CB theo thứ tự tại E và F.Đường vuông góc với CO tại O cắt CA, CB theo thứ tự là P,Q. Cm : ∠POE =∠OFQ
d. Cmr : PE + QF ≥ PQ
Từ điểm A nằm bên ngoài đường tròn (O ) vẽ hai tiếp tuyến AB, AC lần lượt tại B, C của (O ) .
1) Chứng minh tứ giác ABOC nội tiếp đường tròn.
2) Vẽ hai đường kính BD, CE của (O ) , gọi I là giao điểm của AO và BC, gọi F là giao điểm của đường thẳng DI và (O ) , với F khác D. Chứng minh ba điểm A, E, F thẳng hàng.
giúp vs ạ!!!
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Helppp meeeeeee
Cho đường tròn (O;R) từ M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MA (A là tiếp điểm) . Vẽ AH vuông góc với OM
a) Tính OH.OM theo R
b) Vẽ đường kính AB, BM cắt đường tròn (O;R) tại C. Vẽ OI vuông góc với BC tại I. CMR: OI//AC
c) CM: MH.MO= MB.MC
d) Biết OH cắt OI và BC tại N và K. CMR: HK+HN> 2.AH
Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 2R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM.
a) Góc MAB có phải là góc tạo bởi tia tiếp tuyến và dây cung của (O) ? vì sao?
b) Tính góc MOA và số đo cung AB
c) Chứng minh: MC.MD=MH.MO
d) Chứng minh HA là phân giác của góc DHC
e) Khi cát tuyến MCD thay đổi thì trọng tâm tam giác ACD chạy trên đường nào?
Giải giúp mình câu e với, mình cảm ơn.
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD