cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho (O;R) và điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Kẻ đường kính AD của đường tròn (O;R), gọi K là hình chiếu vuông góc của B trên đường thẳng AD. Gọi I là trung điểm của đoạn thẳng BK. Chứng minh: ba điểm M, I, D thẳng hàng
cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
a.cm tứ giác EMNF nội tiếp
b.cm DM.DE=DN.DF
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?
\(Bài 4: Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là giao điểm của AO và BC, K là trung điểm của HB. Đường thẳng AK cắt đường tròn tại M và N( M nằm giữa A và N). Kẻ OI vuông góc với MN (I thuộc MN). Chứng minh a. Tứ giác OHKI nội tiếp b. AB² = AM. AN. Từ đó suy ra AB² + IM² =AI² c. CI = 3BI Read more: https://dethihocki.com/de-ki-2-lop-9-mon-toan-phong-gd-quang-ngai-2019-a14680.html#ixzz6FDyVDHYX\)
Cho tam giác ABC nội tiếp trong đường tròn tâm 0.M là một điểm bất kỳ trên đường tròn đó. Gọi A, B',C' lần lượt là hình chiếu của M trên các đường thắng BC, CA, AB.
a) Chứng minh các tứ giác BC AM và CA MB nội tiếp.
b) Chứng minh 3 diểm A' , B', C' thẳng hàng.
c) Trên đường tròn tâm O dã cho lấy điểm \(M_1\ne M\). Gọi lần lượt là hình chiếu của \(M_1\) lên các đường thằng BC, CA, AB. Tim vị trí của điểm M, trên dường tròn tâm O để đường thẳng \(A_1B_1\) , vuông góc với đường thẳng B'C'.
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.