Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho nửa đường tròn (O;R) đường kính AB và một điểm M trên đường tròn (M khác A và B). Tiếp tuyến tại A và B của (O) cắt tiếp tuyến tại M theo thứ tự ở C và D.
a) AC + BD = CD và AC.BD không đổi.
b) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
c) Giả sử . Tính diện tích tứ giác OMDB theo R.
Cho nửa đường tròn tâm O đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Lấy điểm E là 1 điểm thuộc nửa đường tròn ( E khác với A và B). Tiếp tuyến của nửa đường tròn tại E cắt Ax và By lần lượt tại C và D.
Chứng minh : CD=AC+BD, góc COD=90 độ,AC.BD
Bài 1: Cho đường tròn (O;R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai C
a) Chứng minh tứ giác OASB nội tiếp
b) Chứng minh MA2 = MB.MC
c) Gọi N đối xứng với C qua M. Chứng minh góc CSA = góc MBS
d) Chứng minh NO là tia phân giác của góc ANB
cho đường tròn (O) và một điểm A cố định nằm ngoài (O) .Kẻ tiếp tuyến AB,AC với (O) ,(B,C là các tiếp điểm ) .Gọi am là một điểm di động trên cung nhỏ BC (M khác B và C ) .Đường thẳng AM cắt (O) tại điểm thứ 2 là N .Gọi E là trung điểm của MN
1, chứng minh 4 điểm A,B,O,E cùng thuộc một đường tròn .Xác định tâm của đường tròn đó
2, chứng minh 2 góc BNC +góc BAC = 180 độ
3, chứng minh AC bình (mũ 2) =AM.AN và MN bình (mũ 2) =4(AE bình -AC bình )
4, gọi I ,J lần lượt là hình chiếu của M trên cạnh AB ,AC .Xác định vị trí của M sao cho tích MI.MJ đạt giác trị lớn nhất
Cho đường tròn tâm O; bán kính R, đường kính AB. Lấy điểm M thuộc đường tròn khác hai điểm A,B . Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B lần lượt tại C và D .
a. Vẽ hình và chứng minh tam giác COD vuông.
b. Cho AC= R CÂN 3 . Tính độ dài BD theo R
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
Cho đường tròn tâm O , đường kính AB . Trên đường tròn lấy điểm C , từ C lấy tiếp tuyến d . Đường thẳng vuông góc vs AB tại M . Đường thẳng vuông góc vs AB tại N.
a, Chứng minh rằng : MA=MC
b, Chứng minh rằng : MO là phân giác
c, MN = AM+ BN
GIÚP MIK VS