Cho đường tròn (C): (x-1)2 + (y+2)2=5 và M (3;-1)
a. Viết phương trình tiếp tuyến của (C) tại M
b.Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng: x+2y-1=0
Cho đường tròn \(\left(C\right)\) tâm \(I\) , bán kính bằng 2. Điểm \(M\in\Delta:x+y=0\) . Từ \(M\) kẻ hai tiếp tuyến \(MA,MB\) đến \(\left(C\right)\) với \(A,B\) là tiếp điểm. \(AB:3x+y-2=0\) , \(d\left(I,\Delta\right)=2\sqrt{2}\) . Viết phương trình đường tròn \(\left(C\right)\).
Cho hình vuông ABCD và điểm M đối xứng với D qua C. H,K lần lượt là hình chiếu của C và D lên AM. I là tâm hình vuông. Biết B thuộc đường thẳng 5x + 3y - 10 = 0, K (1;1) và phương trình đường thẳng IH là 3x + y + 1 = 0. Tìm tọa độ B
Trong mặt phẳng toạ độ Oxy cho tứ giác ABCD có AB=√2 ∠CBD=90 nội tiếp đường tròn (C). Phương trình các đường thẳng AB và CD lần lượt là x-y-6=0 và 5x+2y-9=0. Gọi M là giao điểm của AB và CD. Gọi I(a,b) là tâm của (C). Tìm a và b biết b>0 và MC2+MD2=108
Trong mặt phẳng Oxy,cho điểm M(0;1) và 2 đường thẳng d1:x-7y+17=0, d2:x+y-5.Viết phương trình đường thẳng delta đi qua M và tạo với d1,d2 một tam giác cân tại giao điểm d1,d2
Viết phương trình đường thẳng \(\Delta\) đi qua M(1;-3) biết \(\Delta\cap Ox=\left\{A\right\}\) và \(\Delta\cap Oy=\left\{B\right\}\) ; \(S_{OAB}\)=2
trong mặtphẳng Oxy cho đường thẳng \(\Delta\) x-y=0. Đường tròn (C) có bán kính R=\(\sqrt{10}\) cắt \(\Delta\)tại 2 điểm A,B sao cho AB=4\(\sqrt{2}\). tiếp tuyến của (C) tại A, B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C)
a) Xác định tất cả các giá trị của a để góc tạo bởi đường thẳng \(\left\{{}\begin{matrix}x=9+at\\y=7-2t\end{matrix}\right.\) và đường thẳng 3x+4y-2=0 bằng 45 độ
b) Đường thẳng \(\Delta\) đi qua giao điểm của hai đường thẳng \(d_1:2x+y-3=0\) và \(d_2:x-2y+1=0\) đồng thời tạo với đường thẳng \(d_3:y-1=0\) một góc 45 độ có pt là
c) Trong mp tọa độ xOy có bao nhiêu đường thẳng đi qua điểm A(2;0) và tọa với trục hoành góc 45 độ