trong mặt phẳng với hệ tọa độ oxy, cho đường tròn(c) : x^2 + y^2 -2x-2y-3=0 và điểm m(0;2). viết phương trình đường thẳng d qua m và cắt (c) tại hai điểm a,b sao cho ab có độ dìa ngắn nhất
Cho tam giác ABC vuông tại A, điểm M thuộc AB sao cho góc CMB = 135° , biết MB=2, BC= 10 . Tính AM và AC
Cho tam giác ABC có trung tuyến AM và I là trung điểm của AM. Chứng minh rằng: a) IB+IC= AM
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn.Từ M kẻ 2 tiếp tuyến MA, MB với đường tròn (O) (A,B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Tính độ dài đọa thẳng AB và ME biết OM=5cm và R=3cm
b) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D ( C nằm giữa M và D). CMR: góc MEC = góc OED
Cho tam giác ABC có AB < AC, kể trung tuyết AM, phân giác AD .Trên canh AC lấy điểm Ế sao cho AE=AB
a) chứng minh góc DEC > góc ACB
b) chứng minh CD>CM
c) điểm D nằm giữa điểm H và điểm M
Cho ( O;R) Đường kính AB và CD. Dường thẳng BC cắt BD tại tiếp tuyến tại A của đường tròn (o) tại điểm M,N. Gọi P,Q là trung điểm AM,AN
a) C/m tứ giác CDMN nội tiếp
b) C/m các đường cao của \(\Delta BPQ\) cắt nhau tại trung điểm bán kính OA
c) Gỉa sử AB cố định , CD thay đổi. Tìm Min \(S_{PQB}\) theo R
d) Tìm vị tró CD để \(S_{MNDC}\) nhỏ nhất
Cho điểm A1; 3 . Viết phương trình tổng quát của đường thẳng đi qua A và a) Vuông góc với trục tung b) song song với đường thẳng d x y : 2 3 0
cho tam giác ABC có AB<AC, tia phân giác của góc A cắt BC tại e . lấy AB=AD sao cho D thuộc tia AC.
a) gọi I là giao điểm của BDvà AẺ. C/m Ilà trung điểm của BD
b)gọi N là giao điểm của EDvà AB và Mlà trung điểm của NC.C/m A,I,M thẳng hàng