Cho điểm A di chuyển trên đường tròn O đường kính BC=2R . Lấy điểm A bất kì trên đường tròn (O) ( A không trùng với B và C). Tren tia AB lấy điểm M sao cho B là trung điểm của AM. Gọi H là hình chiếu vuông góc của A lên BC là I là trung điểm của HC. Cmr \(\Delta AHM\sim\Delta CIA\)
Bài toán. Cho nửa đường tròn tâm O đường kính AB. Gọi C là điểm nằm trên nửa đường tròn (C khác A, B). Gọi H là hình chiếu vuông góc của C trên AB; D là điểm đổi xứng với A qua C; I là trung điểm CH; J là trung điểm DH.
a) Chứng minh $\angle CIJ=\angle CBH$ (đã làm)
b) Chứng minh tam giác CJH đồng dạng với HIB (đã làm)
c) Gọi E là giao điểm của HD và BI. Chứng minh $HE\cdot HD=HC^2.$
d) Xác định vị trí của điểm C trên nửa đường tròn để $AH+CH$ đạt Max.
Ps: Chán hoc24 phiên bản mới ghê, em đăng câu hỏi hơi dài (do có những thảo luận) mà hoc24 tự ý rút gọn làm mất nội dung câu hỏi. Đăng ảnh thì không hiển thị. Em phải đăng lại lần này là lần thứ 3.
Cho đường tròn tâm O bán kính R và đường thẳng(Δ)không có điểm chung với đường tròn tâm( O), H là hình chiếu vuông góc của O trên (Δ) .từ điểm M bất kì trên (Δ) ( M không trùng H), vẽ 2 tiếp tuyến MA, MB với đường tròn (O) (A,B là hai tiếp điểm ).Gọi I, K theo thứ tự là giao điểm của AB với OM và OH
1. Chứng minh AB = 2 .AK với 5 điểmM ,A ,O, B, H cùng thuộc đường tròn
2 .Chứng minh OI.OH = OK.OM = \(R^2\)
3.trên đoạn OA lấy điểm N sao cho AN = 2ON. đường trung trực của BN cắt OM ở E .tính tỉ số\(\dfrac{OE}{OM}\)
Cho (O;R) và điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Kẻ đường kính AD của đường tròn (O;R), gọi K là hình chiếu vuông góc của B trên đường thẳng AD. Gọi I là trung điểm của đoạn thẳng BK. Chứng minh: ba điểm M, I, D thẳng hàng
Cho đường tròn (O;R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.1) Chứng minh A; O; M; N; I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.2) Gọi K là giao điểm của MN và BC. Chứng minh
\(\dfrac{2}{AK}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để AMPN là hình bình hành.
Mình cần câu c thôi
Cho đường tròn (O) bán kính OA = R. Qua trung điểm của OA, kẻ dây BC vuông góc với OA.
a. Tứ giác ABOC là hình gì? Vì sao?
b. trên tia OA lấy điểm E sao cho OE = 2R. Chứng minh BE là tiếp tuyến của đường tròn (O)
Cho nửa đường tròn tâm O đường kính BC=2R, A là một điểm bất kìa trên nửa đường tròn khác B và C. Kẻ AH vuống góc với BC, gọi E và F là chân đường vuông góc hạ từ H xuống AB và AC.
a) Cm AE.AB=AF.AC và EF^3=BE.CF.BC
b) Gọi I là điểm đối xứng của H qua AB. Cm IA là tiếp tuyến của nửa đường tròn.
c) Tìm vị trí của A để diện tích tam giác AHB lớn nhất.
Dạ em chỉ cần câu c thôi ạ, em cảm ơn ạ.
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB