\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)(1)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Leftrightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+\dfrac{2ab}{xy}+\dfrac{2bc}{yz}+\dfrac{2ac}{xz}=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ac}{xz}\right)=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{zab+xbc+yac}{xyz}\right)=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=4\) (vì \(zab+xbc+yac=0\) từ (1) )
Hình như đề sai thì phải.(Xem có viết đúng đề ko nhé) Mk chỉ tính được cái này không tính được cái đề của bạn cho
Đề sai r
Chỗ tính giá trị bt A = ...
Phải là
Tính giá trị của biểu thức
\(A=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)