HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Vì \(a;b;c\) là 3 cạnh của tam giác nên \(a;b;c>0\)
Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ac+bc}\)
Ta sẽ chứng minh:
\(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3}{2}\)
Thật vậy,áp dụng bđt Cauchy Schwarz cho 3 số dương ta có:
\(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)
Như vậy cần chứng minh: \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{3}{2}\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\) *ĐÚNG*
Dấu "=" xảy ra khi: \(a=b=c\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)\ge\dfrac{9}{2}\)
\(\Rightarrow\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\ge\dfrac{9}{2}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge\dfrac{9}{2}\)
\(\Rightarrow2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge9\)
\(\Rightarrow\left(a+b+c+a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge9\)
Đặt: \(\left\{{}\begin{matrix}a+b=x\\b+c=y\\c+a=z\end{matrix}\right.\) Khi đó bất đẳng thức trở thành:
\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) (đúng theo AM-GM)
Vậy bất đẳng thức cần chứng minh đúng
Dấu "=" xảy ra khi: \(a=b=c>0\)
\(l=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}=\dfrac{1^2}{x}+\dfrac{2^2}{y}+\dfrac{3^2}{z}\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=\dfrac{36}{1}=36\)
Do nhầm lẫn chữ số 7 thành 4 nên thừa số thứ hai giảm đi :
7 - 4 = 3 đơn vị
Nên tích giảm đi 3 lần thừa số thứ nhất.
Vậy thừa số thứ nhất là:
1245 : 3 = 415
Tích đúng là:
415 x 127 = 52705
ĐS: 52705
Khi 9 giờ kim dài và kim ngắn vuông góc với nhau
Vì vậy thì nửa tiếng nữa là kim dài và kim ngắn vuông góc với nhau
Tức là 30 phút
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)(1)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Leftrightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+\dfrac{2ab}{xy}+\dfrac{2bc}{yz}+\dfrac{2ac}{xz}=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ac}{xz}\right)=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{zab+xbc+yac}{xyz}\right)=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=4\) (vì \(zab+xbc+yac=0\) từ (1) )
Hình như đề sai thì phải.(Xem có viết đúng đề ko nhé) Mk chỉ tính được cái này không tính được cái đề của bạn cho