Sai đề
Hướng làm
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>a=kb và c=kd
sau đó thế vào biểu thức có chứa bình phương rồi thu gọn sẽ ra
Sai đề
Hướng làm
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>a=kb và c=kd
sau đó thế vào biểu thức có chứa bình phương rồi thu gọn sẽ ra
Bài 1: Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng :
a, \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b, \(\dfrac{a^2-b^{2^{ }}}{c^2-d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{a}{b}\) =\(\dfrac{c}{d}\) (a,b,c,d khác 0)Chứng minh
\(\dfrac{a^2+b^2}{c^2+d^2}\) = \(\dfrac{\left(a-b^{ }\right)^2}{\left(c-d\right)^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{c}\). Chứng minh :
\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho các số a,b,c,d thỏa mãn các điều kiện \(a^2+c^2=1;\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\)
Chứng minh rằng: \(\dfrac{a^{2006}}{b^{1003}}+\dfrac{c^{2006}}{d^{1003}}=\dfrac{2}{\left(b+d\right)^{1003}}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh các tỉ lệ thức sau:
\(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd};\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)
a. Cho các số a , b , c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tìm giá trị của biểu thức \(H=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
b. Tìm các cặp số nguyên ( x ; y ) sao cho : \(\left(9x+6xy\right)-2y=-8\)
c. Cho 6 số nguyên dương \(a< b< c< d< m< n\)
Chứng minh rằng : \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Cmr
a, \(\dfrac{a^2+b^2}{c^2+d^{2^{ }}}\)=\(\dfrac{ab}{cd}\)
b, \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)=\(\dfrac{ab}{cd}\)