Đề sai t sửa lại : Cho \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\). CMR \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Ta có : \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{c}:\dfrac{1}{2}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow\dfrac{1}{c}.2=\dfrac{b}{ab}+\dfrac{a}{ab}\)
\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\)
\(\Leftrightarrow2.ab=c\left(a+b\right)\)
\(\Leftrightarrow ab+ab=ac+bc\)
\(\Leftrightarrow ab-bc=ac-ab\)
\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\left(đpcm\right)\)