Bài 1:Cho tam giác ABC. Gọi I là tâm đường tròn ngoại tiếp tam giác. Chứng minh rằng. a.vecto IA + b.vecto IB+ c.vecto IC= vecto O
Bài 2: Cho tam giác ABC. Gọi M là điểm trên cạnh BC. Chứng minh:
Vecto AM= MC/BC.vectoAB+MB/BC.vectoAC
Cho tam giác abc, g là trọng tâm và i là điểm đối xứng vg qua b
a) ib bằng mấy lần ie. Vì sao
b) cm vecto ia - 5vecto ib + becto ic= 0
c) đặt vecto ag= vecto a, vecto ai= vecto b. Tính vecto ab,ac theo vecto a,b
1/ cho lục giác đều ABCDEF tâm O, M là điểm tùy ý. CM:
a)Các vecto CA+OB+OC+CD+CE+CF= vecto 0
b) Các vecto MA+MC+ME= MB+MD+MF
2/ cho hình bình hành ABCD gọi I là trung điểm AB, CM
CM: a) các veco AB+CD+BC+DA= vecto 0
b) các vecto ID+IC=AD+BC
Cho tam giác ABC. Gọi A', B', C', lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: Vecto AA' + Vecto BB' + Vecto CC' = 0
Cho tam giác ABC. Gọi M, N, P lần lược là trung điểm BC, CA, AB. Dựng vecto MK=vecto CP, vecto KL=vecto BN
a) CMR: vecto KP=vecto PN
b) tứ giác AKBN là hình gì?
C) CMR: vecto AL=vecto 0
1.Cho tam giác ABC có trực tâm H,nội tiếp trong đường tròn (O) , M là trung điểm của BC, AA' và BB' là hai đường kính của (O).
a)CM: vecto AH= vecto B'C, vecto HC= vecto AB'
b)CM:vecto HM= vecto MA'
c)Gọi K là trung điểm AH.CM vecto AK= vecto OM
d)AH cắt BC tại Q,cắt (O) tại N#A.CM: vecto HQ=vecto QN
2.Cho tam giác ABC có trọng tâm G.Dựng vecto CD=vecto GB.CM: vecto AG=GB
Cho tam giác ABC. Đặt vecto CA = vecto a, vecto CB = vecto b. Lấy các điểm A’ và B’ sao cho vecto CA’ = -2 vecto a, vecto CB’ = 2 vecto b. Gọi I là giao điểm của A’B và B’A. Giả sử vecto CI = m. vecto a + n. vecto b. Khi đó m/n bằng?
Cho tam giác ABC, lấy các điểm I, J sao cho vecto IC trừ vecto IB cộng vecto IA bằng 0 và vecto JA cộng vecto JB trừ đi ba lần vecto JC bằng 0
A,cmr:I,B và trọng tầm G của tam giác ABC thẳng hàng
B,cmr:vecto IJ song song với vecto AC.
Mong các bạn giúp mình vs:)
cho tam giác ABC nội tiếp đường tròn O . Gọi H là trực tâm của tam giác . AH cắt BC tại I . AH cắt (O) tại M (khác A) . C/M :
a. Vecto HI = Vecto IM
b.Gọi K là trung điểm BC . C/m vecto AH và vecto OK cùng hướng
c.HK cắt (O) tại D . CMR : vecto BH = vecto DC , vecto BD = vecto HC