Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mạnh Tùng Đào

cho \(\Delta ABC\)nhọn . Vẽ về phía ngoài \(\Delta ABC\)các \(\Delta\)đều ABD và ACE. Gọi M là giao điểm BE và CD. Chứng minh :

a/ \(\Delta\)ABE=\(\Delta\)ADC

b/Góc BMC=120o

(Nhớ Vẽ Hình)

nguyễn Thị Bích Ngọc
5 tháng 4 2017 lúc 12:13

A B C D E M 1 2 3 F

Ta có : \(\Delta ABD\) đều

\(\Rightarrow\widehat{A_2}=60^o\)

\(\Delta ACE\) đều

\(\Rightarrow\widehat{A_3}=60^o\)

\(\Rightarrow\widehat{A_2}=\widehat{A_3}\)

Ta lại có : \(\widehat{A_1}+\widehat{A_2}=\widehat{DAC}\)

\(\widehat{A_1}+\widehat{A_3}=\widehat{BAE}\)

Mặt khác \(\widehat{A_1}chung\)

\(\widehat{A_2}=\widehat{A_3}\) (cmt)

Do đó : \(\widehat{BAE}=\widehat{DAC}\)

Xét \(\Delta ABE\)\(\Delta ADC\) có:

\(AB=AD\) ( \(\Delta ABD\) đều)

\(\widehat{BAE}=\widehat{DAC}\)

\(AE=AC\)(\(\Delta ACE\) đều)

Do đó : \(\Delta ABE=\Delta ADC\)

\(\Rightarrow\widehat{AEB}=\widehat{ACD}\) ( hai góc tương ứng )

b) Gọi giao điểm của AC và BE là F

Trong \(\Delta AFE\) có :

\(\widehat{A_3}+\widehat{AFE}+\widehat{E}=180^o\) ( định lí )

Trong \(\Delta MFC\) có :

\(\widehat{MFC}+\widehat{FMC}+\widehat{FCM}=180^o\) ( định lí )

Mặt khác

\(\widehat{E}=\widehat{FCM}\)( theo câu a )

\(\widehat{MFC=}\widehat{AFE}\) ( hai góc đối đỉnh )

\(\Rightarrow\widehat{FMC}=\widehat{A_3}\)

\(\widehat{A_3}=60^o\)(\(\Delta ACE\)đều )

\(\Rightarrow\)\(\widehat{FMC}=60^o\)

Ta lại có : \(\widehat{FMC}+\widehat{BMC}=180^o\)( hai góc kề bù )

hay \(60^o+\widehat{BMC}=180^o\)

\(\Rightarrow\widehat{BMC}=180^o-60^o=120^o\)(đpcm)

Gaming ๖ۣۜÁc๖ۣۜQuỷ
5 tháng 4 2017 lúc 12:00

a, Ta có: vì tam giác ABD là tam giác đều

=> góc DAB = 60 độ

vì tam giác ACE là tam giác đều

=>góc CAE = 60 độ

Lại có: 60 độ + góc CAB = 60 độ + góc CAB

<=>góc DAB+ góc CAB = góc CAE + góc CAB

=> góc DAC = góc BAE

Xét tam giác ABE và tam giác ADC có:

AB = AD (gt)

góc BAE = góc DAC (chứng minh trên)

AE=AC (gt)

=> tam giác ABE = tam giác ADC

b) Gọi giao điểm của AB và CD là I

Vì tam giác ABE = tam giác ADC

=> góc ABE = góc ADC hay góc IBM = góc ADI

Mà góc BIM = góc AID (đối đỉnh)

=>góc DAI = góc IMB

=> góc IMB = 60 độ

Mà góc BMC = góc DMC - góc DMB

góc BMC = 180 độ - 60 độ

=> góc BMC = 120 độ

A B C D E M I