cho ∆abc vuông tại a tia phân giác của góc ABC cắt ac tại i kẻ ih vuông bc. Gọi k là giao điểm của ab và hi. Chứng minh rằng : a. ∆abi = ∆hbi b. Bi là đg trung trực của đoạn thẳng ah c. ∆abh là tam giác đều d. Bi vuông ck
1.Cho Δ ABC có AB=3cm, AC=4cm, BC=5cm.
a/ Δ ABC là Δ gì?
b/ Vẽ BD là phân giác ∠. Trên cạnh BC lấy điểm E sao cho AB=AE. CM: AD=DE
c/ CM: AE⊥BD
d/ Kéo dài BA cắt ED tại F. CM: AE song song FC
2. Cho Δ ABC cân tại A. Kẻ AH⊥BC tại H
a/ CM: ΔABH\(=\)△ACH
b/ Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Chứng tỏ G là trọng tâm của ΔABC
c/ Cho AB=30, BH=18. Tính AH, AG
d/ Từ H kẻ HD song song với AC ( D ∈ AB). CM 3 điểm C, G, D thẳng hàng.
3. Cho Δ ABC⊥A. Biết AB=3, AC=4.
a/ Tính BC
b/ Gọi M là trung điểm của BC. Kẻ BH⊥AM tại H, CK⊥AM tại K. CM: ΔBHM=ΔCKM
c/ Kẻ HI⊥BC tại I. So sánh HI và MK
d/ So sánh BH+BK với BC
Cho ΔABC⊥A, đường phân giác BE. Kẻ EH⊥BC (H∈BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a/ ΔABE = ΔHBE
b/ BE là đường trung trực của AH
c/ EK = EC, AH // KC
d/ AE < EC
Cho tam giác ABC :
a) Qua trung điểm D của cạnh BC, kẻ đường thẳng song song với AB, nó cắt cạnh AC tại E. Qua E, kẻ đường thẳng song song với BC, nó cắt AB tại F. Chứng minh \(\Delta CDE=\Delta EFA\). Từ đó suy ra E là trung điểm của cạnh AC ?
b) Chứng minh rằng đường thẳng đi qua các trung điểm hai cạnh của một tam giác thì song song với cạnh thứ ba của tam giác đó ?
c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ABC là trực tâm của tam giác có ba đỉnh là trung điểm ba cạnh của tam giác ABC ?
Cho ΔABC vuông ở A ( AB< AC). Từ A kẻ AH⊥BC ( H∈BC). AD là tia phân giác HAC (D∈BC), DK⊥AC ( K∈AC)
a) Chứng minh: ADH= ADK
b) Chứng minh ΔBAD cân
c) Gọi I là giao điểm của AH VÀ BI. Chứng minh ID// AC.
Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn
Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB.
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.
(Vẽ hình giúp mk với nha mk cần gấp ạ)
Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước.
a) Gọi H là điểm thuộc đường thẳng BC sao cho \(AH\perp BC\). Gọi I, J là các điểm thuộc đường thẳng AH sao cho \(EI\perp AH\) và \(GJ\perp AH\). Chứng minh :
\(\Delta ABH=\Delta EAI,\Delta ACH=\Delta GAJ\)
Từ đó suy ra đường thẳng AH cắt EG tại trung điểm K của EG (tức là AK là trung tuyến của tam giác AEG)
b) Gọi L là điểm thuộc đường thẳng AK sao cho K là trung điểm của AL. Chứng minh AL = BC
c) Chứng minh \(\Delta ABL=\Delta BDC\). Từ đó suy ra CD là một đường cao của tam giác BCL
d) Chứng minh rằng các đường thẳng AH, BF, CD đồng quy ?
Cho tam giác ABC vuông tại A, phân giác CE (E∈AB). Kẻ EH⊥BC, kẻ BD⊥EC. Chứng minh:
a) ΔACE=ΔHCE
b) CE là đường trung trực của đoạn AH
c) BE>AE
d) Gọi M là giao điểm của CA và BD. Chứng minh rằng 3 điểm M, E, H thẳng hàng
Cho tam giác ABC có A < 90 *, kẻ AH vuông góc BC. Vẽ điểm E, F sao cho AB, AC thứ tự là đường trung trực của HE và HF, EF cắt AB, AC ở M, N. Chứng minh:
a) AE=AF
b)HA là phân giác của góc MHN
c)CM//HE, BN//HF
giúp mik nhoa