cho tam giác ABC, một điểm M tùy ý trong tam giác. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, Ac, AB tại D,E, F. Chứng minh rằng: \(\dfrac{AM}{AD}+\dfrac{BM}{BE}+\dfrac{CM}{CF}\) là hằng số
Cho tam giác ABC có điểm M nằm trong tam giác. Gọi I, J, K lần lượt là giao điểm của AM, BM, CM với các cạnh của tam giác. Đường thẳng qua M và song song với BC cắt IK, IJ theo thứ tự tại E và F. Chứng minh: ME=MF
Câu 1: Cho tam giác ABC vuông tại A, gọi O là trung điểm AB. Đường thẳng qua O vuông góc CO cắt đường thẳng qua B vuông góc với AB tại D.
a) Chứng minh rằng AB^2=4AC.BD.
b) M là một điểm bất kì trên CD, gọi E,F lầm lượt là hình chiếu của M trên OC, OD. Chứng minh rằng: MC.MD=EO+FO.FD.
Câu 2: Cho tam giác ABC vuông cân tại A và điểm M thuộc cạnh BC. Kẻ ME,MF lần lượt vuông góc với AB,AC tại E và F. Chứng minh rằng:
a) BM^2= 2ME^2, CM^2 =2MF^2
b) BM^2+CM^2= 2AM^2
Giups mình với huhu, mình đang cần gấp lắm!! PLEASE
Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.
cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC
Cho tam giác ABC vuông tại A, kẻ đường cao AH, D và E lần lượt là hình chiếu của H trên AB, AC.
a. Chứng minh: Tam giác DBH đồng dạng với tam giác EHC.
b. Gọi M,N là trung điểm của BH, HC. CM: MNED là hình vuông
c. qua A kẻ đường thẳng vuông góc với ED, cắt BC tại I. Chứng minh: I là trung điểm BC.
d. Tìm điều kiện của tam giác ABC để SABC = 2SADHE
Mọi người ơi, cho em hỏi bài này với ạ, cho tam giác ABC với đường tròn nội tiếp tâm I, kẻ ID, IE, IF lần lượt vuông góc với BC, AC, AB, gọi M, N, P, Q lần lượt là trung điểm BD, CD, CE, BF, MQ cắt NP tại T, chứng minh TB = TC. Em cảm ơn ạ
BÀI 2: Cho \(\Delta\) ABC vuông tại A, \(kẻ\) đường thẳng song song BC cắt các cạnh góc vuông AB và AC tại M và N. biết MB=12 cm; NC = 9cm. Gọi E và F lần lượt là trung điểm của MN và BC.
a. chứng minh 3 điểm A ; E; F thẳng hàng
b.Gọi G là trung điểm của BN. Giải \(\Delta\) AFG
c. chứng minh: EF . AC = EG. AB
~ giải chi tiết giúp mình với ^.^ ~
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, các đường phân giác trong BE, CF cắt nhau tại I, gọi M,N lần lượt là chân đường cao hạ từ E, F lên BC, K là giao điểm của AN với BI, L là giao điểm của AM với CI, D là chân đường cao hạ từ I lên BC.
1. CM: Tam giác DKL vuông cân
2. CM: AI2 = HK2 + HL2
3. Gọi AH cắt EF tại S. CM: DKSL là hình vuông