Cho tam giác ABC có BC = a. Đường cao AH = h. Từ 1 điểm M trên AH vẽ đường thẳng song song với BC cắt AB, AC lần lượt tại P, Q. Vẽ PS và QR vuông góc với BC.
a. Tính diện tích tứ giác theo a, h, x với x = AM.
b. Xác định M trên AH để diện tích tứ giác PQRS lớn nhất.
Cho tam giác ABC có BC = a. Đường cao AH = h. Từ 1 điểm M trên AH vẽ đường thẳng song song với BC cắt AB, AC lần lượt tại P, Q. Vẽ PS và QR vuông góc với BC.
a. Tính diện tích tứ giác theo a, h, x với x = AM.
b. Xác định M trên AH để diện tích tứ giác PQRS lớn nhất.
cho tam giác ABC,đường cao AH=h,BC=a. từ M trên AH kẻ đt song song BC cắt AB,AC tại P,Q. kẻPS,QR vuông BC.
a)tính diện tích PQRS theo a,h,x(AM=x)
b)xác định M trên AH để có diện tích lớn nhất
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho \(\Delta\)ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD
b)Gọi I là giao điểm của BD và AH. Chứng minh:\(\Delta\)AID cân
c) Qua I kẻ đường thẳng song song với AC cắt BC tại K.Chứng minh:\(\dfrac{HK}{KC}\)=\(\dfrac{HB}{AB}\)
d)Gọi E là giao điểm của AK và I,F là trung điểm của AC.Chứng minh:H,E,F thẳng hàng
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T