Xét ΔBAC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(\dfrac{5^2+BC^2-9^2}{2\cdot5\cdot BC}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\dfrac{BC^2-56}{10BC}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow BC^2-56=5\sqrt{2}\cdot BC\)
=>\(BC^2-5\sqrt{2}\cdot BC-56=0\)
\(\text{Δ}=\left(-5\sqrt{2}\right)^2-4\cdot1\cdot\left(-56\right)=\sqrt{274}\)
=>\(\left[{}\begin{matrix}BC=\dfrac{5\sqrt{2}-\sqrt{274}}{2}\left(loại\right)\\BC=\dfrac{5\sqrt{2}+\sqrt{274}}{2}\left(nhận\right)\end{matrix}\right.\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
nên \(\widehat{A}\simeq112^0\)
=>góc C=180-112-45=23 độ