a) Biết AF = 3,6; FC = 6,4. Tính DF và \(S_{ADC}\)
b) Chứng minh: \(\Delta AEF \backsim \Delta ACB\)
Cho tam giác DEF vuông tại D, đường cao DH, biết DE = 12cm , EF = 20 cm. Vẽ AH vuông góc với DE tại A, HB vuông góc DF tại B. Gọi K là trung điểm của EF và M là trung điểm của DK
Tính độ dài ah
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
Bài 1. Giải tam giác vuông ABC, biết: BC = 10cm, góc C = 55 độ.
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm, AC = 12cm.
a) Tính AH.
b) Gọi M, N là hình chiếu của H trên AB, AC. Chứng minh rằng: MN2 = AM.AB.
c) Gọi K là điểm đối xứng của H qua AC. Tính diện tích tứ giác AHCK.
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
Cho hình vuông ABCD có góc B = góc D= 90 độ và AB=AD. Trên cạnh BC lấy điểm M và trên cạnh CD lấy điểm N sao cho AM vuông góc BN. Gọi H là giao điểm thẳng AM và BN; gọi K là giao điểm của đoạn thẳng AN và BM. Chứng minh rằng AH.AM=AK.AN
Cho tam giác DEF vuông tại D, đường cao DI. Biết DF/EF=4/5 , DE = 18 cm . Giải tam giác DEF và tính độ dài DI
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)