a: Xét ΔBAC có BM là phân giác
nên MA/MC=BA/BC=BA/BE
=>MB//EC
MA/MC=BA/BE
nên MA/MC=BF/BC
=>BM//AF
=>MB//EC//AF
b: Xét ΔBAC có
BM vừa là đường cao, vừa là phân giác
nên ΔBAC cân tại B
=>BA=BC
=>BF=BE
=>AE=FC
a: Xét ΔBAC có BM là phân giác
nên MA/MC=BA/BC=BA/BE
=>MB//EC
MA/MC=BA/BE
nên MA/MC=BF/BC
=>BM//AF
=>MB//EC//AF
b: Xét ΔBAC có
BM vừa là đường cao, vừa là phân giác
nên ΔBAC cân tại B
=>BA=BC
=>BF=BE
=>AE=FC
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE = BC
Chứng minh rằng BD // EC ?
: Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a. So sánh BC và DE.
b. Tam giác ACD và tam giác ABE là tam giác gì?
c. Gọi M là trung điểm của BE. Chứng minh AM vuông góc với BE
Cho tam giác ABC cân tại góc A gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho DM = BM a)tam giác BMC=tam giác DMA b) chứng minh tam giác ACD cân c) trên tia đối của tia CA lấy điểm E sao cho CA=CE . Chứng minh DC đi qua trung điểm K của BE
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .
Cho tam giác ABC . Các tia phân giác của các góc B và C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D và cắt AC tại E. Chứng minh rằng DE = DB + EC
Cho tam giác ABC có AB < AC . Lấy E thuộc AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm D sao cho BD = EC
a) Chứng minh tam giác ADC cân
b) Kẻ AH vuông góc với BE tại H , AH cắt DC tại K . Chứng minh AK là đường trung trực của DC